Allopurinol in Ischemia — Reperfusion Injury of Heart

  • Ingrid Emerit
  • Jean-Noel Fabiani
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 264)


Allopurinol, chemically known as 4-hydroxypyrazolo-(3,4 d)pyrimidine, is an analogue of hypoxanthine, in which the positions of N7 and C8 are reversed. It is metabolized to o×ypurinol, the 4,6-dihydroxy analogue. Both allopurinol and oxypurinol are inhibitors of xanthine oxidase. They also inhibit other enzymes of purine metabolism such as purine nucleoside phosphorylase and pyrimidine deoxyribosyl transferase. In ribonucleotide linkage, allopurinol inhibits early enzymes of both purine and pyrimidine biosynthesis. Extensive clinical experience attests to the usefulness of allopurinol as an antihyperuric agent in gout.1


Xanthine Oxidase Open Heart Surgery Sister Chromatid Exchange Ataxia Telangiectasia Spin Trap 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.B. Wyngaarden and W.N. Kelley. Disorders of purine and pyrimidine metabolism. In The metabolic basis of inherited disease. J.B. Stanbury, D.S. Fredrickson,J.B. Wyngaarden, J.L. Goldstein and M.S. Brown eds. McGraw-Hill Book Comp. New York, 1983, pages 1102–1105.Google Scholar
  2. 2.
    R.A. DeWall, K.A. Vasko, E.L. Stanley and P. Kezdi. Responses of the ischemia myocardium to allopurinol.Am. Heart JN 82:362–370 (1986).CrossRefGoogle Scholar
  3. 3.
    D.E. Chambers, D.A. Parks, G. Patterson, R. Roy, J.M. McCord, S. Yoshida, L.F. Parmley and J.M. Downey. Xanthine oxidase as a source of free radical damage in myocardial ischemia. J. Mol. Cell Cardiol. 17:145–152 (1985).PubMedCrossRefGoogle Scholar
  4. 4.
    S.W. Werns, M.J. Shea and B.R Lucchesi. Free radicals and myocardial injury: pharmacologic implications. Circulation 74:1–5 (1986).PubMedCrossRefGoogle Scholar
  5. 5.
    S. Akizuki, S. Yoshida, D.E. Chambers, L.J. Eddy, L.F. Parmley, D.M. Yellon and J.M. Downey. Infarct size limitation by the xanthine oxidase inhibitor allopurinol in closed chest dogs. Cardiovasc. Res. 19:686–692 (1985).PubMedCrossRefGoogle Scholar
  6. 6.
    J.C. Parker and E.E. Smith. Effects of xanthine oxidase inhibition in cardiac arrest. Surgery 71:339–344 (1972).PubMedGoogle Scholar
  7. 7.
    A.S. Manning. Reperfusion-induced arrhythmias: do free radicals play a critical role? Free Radical Biol. Med. 4:305–316 (1988).CrossRefGoogle Scholar
  8. 8.
    J.N. Fabiani. The no-reflow phenomenon following early reperfusion of myocardial infarction and its prevention by various drugs. Heart Bull. (La Haye) 7:134–136 (1976).Google Scholar
  9. 9.
    H. Adachi, K. Motomatsu, I. Yara. Effect of allopurinol on patients undergoing open heart surgery.Japanese Circ. J.43:3935–401 (1979).Google Scholar
  10. 10.
    P. Perier, J.N. Fabiani, M. Bocher. Protection myocardique pendant l’arret cardiaque ischemique; etude hemodynamique des effets de 1’allopurinol dans une solution cardioplegique. Arch. Mal. Coeur 73:713–717 (1980).PubMedGoogle Scholar
  11. 11.
    K.A. Reimer and R.B. Failure of the xanthine oxidase inhibitor allopurinol to limit infarct size after ischemia and reperfusion in dogs. Circulation 71:1069–1075 (1985).PubMedCrossRefGoogle Scholar
  12. 12.
    P.J. Simpson, J.K. Mickelson and B.R. Lucchesi. Free radical scavengers in myocardial ischemia. Federation Proc. 46:2413–2421 (1987).Google Scholar
  13. 13.
    D.E. Chambers, D.A. Parks, G. Patterson. Role of oxygenderived free radicals in myocardial ischemia.Fed. Proc.47:1093–1099 (1983).Google Scholar
  14. 14.
    J.R. Stewart, S.L. Crute, M.L. Loughlin, M.L. Hess and L.J. Greenfield. Prevention of free-radical-induced myocardial reperfusion injury with allopurinol. J. Thorac. Cardiovasc. Sura. 90:68–72 (1985).Google Scholar
  15. 15.
    D.J. Hearse, A.S. Manning, J.M. Downey and D.M. Yellon. Xanthine oxidase: a critical mediator of myocardial injury during ischemia and reperfusion? Acta. Physio. Scand. 126:65–78 (1986).Google Scholar
  16. 16.
    J.M. McCord. Oxygen-derived free radicals in postischemic tissue injury. N. Engl. J. Med. 312:159–160 (1985).PubMedCrossRefGoogle Scholar
  17. 17.
    J.L. Zweier, J.T. Flaherty, M.L. Weisfeldt. Direct measurement of free radical generation following reperfusion of ischemic myodardium. Proc. Natl. Acad. Sci. (USA) 84:1404–1407 (1987) .PubMedCrossRefGoogle Scholar
  18. 18.
    P.B. Garlick, J.M. Davies, T.S. Slater, D.J. Hearse. Detection of free radical production in the isolated rat heart using a spin trap agent and electron spin resonance.circ. Res.6l::757–76O (1987).Google Scholar
  19. 19.
    C.M. Arroyo, J.H. Kramer, R.H. Leibof, G.W. Mergner, B.f. Dickens and W.B. Weglicki. Spin trapping of oxygen and carboncentered free radicals in ischemic canine myocardium. Free Rad. Biol. Med. 3:313–316 (1987).PubMedCrossRefGoogle Scholar
  20. 20.
    R. Bolli, B.S. Patel, M.O. Jeroudi, E.K. Lai and P.B. McCay. Demonstration of free radical generation in stunned myocardium of intact dogs with the use of the spin trap alpha-phenyl N-tertbutyl-nitone. J. Clin. Invest. 82:476–485 (1988).PubMedCrossRefGoogle Scholar
  21. 21.
    T.D. Engerson, T.G. McKelvey, D.G. Rhyne, E.B. Boggio, S.J. Snyder and H.P. Jones. Conversion of xanthine dehydrgenase to oxidase in ischemic rat tissues. J. Clin. Invest. 79:156401570 (1988) .Google Scholar
  22. 22.
    E.D. Jarasch, C. Grund, G. Bruder, H.W. Heid, T.W. Keenan and W.W. Franke. Localization of xanthine oxidase in capillary endothelial cells. Acta. Phsyiol. Scand. Suppl. 548:39–46 (1986).Google Scholar
  23. 23.
    J.L. Zweier, P. Kuppusamy and G. A. Lutty. Measurement of endothelial cell free radical generation: Evidence for a central mechanism of free radical injury in postischemic tissues. Proc. Natl. Acad. Sci. (USA) 85:4046–4050 (1988).CrossRefGoogle Scholar
  24. 24.
    D.V. Godin and S. Bhimji. Effects of allopurinol on myocardial ischemic injury induced by coronary artery ligation and reperfusion. Biochem. Pharmacol. 36:2101–2107 (1987).PubMedCrossRefGoogle Scholar
  25. 25.
    C.M. Grum, R.A. Ragsdale, L.H. Ketai and M. Shlafer. Absence of xanthine oxidase or xanthine dehydrogenase in the rabbit myocardium. Biochem. Biophys. Res. Commun. 141:1104–1108 (1986).PubMedCrossRefGoogle Scholar
  26. 27.
    D.A. Peterson, B. Kelly and J.M. Gerrard. Allopurinol can act as an electron transfer agent.Biochem. Biophys. Res. Commun.137:76–79 (1986).PubMedCrossRefGoogle Scholar
  27. 28.
    L.G. Cockerham, C.M. Arroyo and J.D. Hampton. Effect of 4-hydroxypyrazolo (3,4-d) pyrimidine (allopurinol) on postirradiation celebral blood flow: implications of free radical involvement. Free Rad. Biol. Med. 4:279–284 (1988).PubMedCrossRefGoogle Scholar
  28. 29.
    G.B. Faguet, S.M. Reichard, D.A. Welter. Radiation-induced clastogenic factors. Cancer Genet. Cytocrenet. 12:73–80 (1984).CrossRefGoogle Scholar
  29. 30.
    I. Emerit. Chromosome breakage factors: origin and possible significance. Prog. Mutat. Res. 4:61–74 (1982).Google Scholar
  30. 31.
    M. Shaham, Y. Becker and M.M. Cohen. A diffusable clastogenic factor in ataxia telangiectasia. Cytoaenet. Cell. Genet. 27:155–161 (1980).CrossRefGoogle Scholar
  31. 32.
    I. Emerit and P. Cerutti. Clastogenic activity from Bloom syndrome fibroblast cultures.Proc. Natl. Acad. Sci. (USA)78:1868–1872 (1981).CrossRefGoogle Scholar
  32. 33.
    I. Emerit, M. Keck. A. Levy, J. Feingold and A.M. Michelson. Activated oxygen species at the origin of chromosome breakage and sister chromatid exchanges. Mutat. Res. 103:165–172 (1982).PubMedCrossRefGoogle Scholar
  33. 34.
    I. Emerit, S.H. Khan and P. Cerutti. Treatment of lymphocyte cultures with a .hypoxanthine-xanthine oxidase system induces the formation of transferable clastogenic material. Free Rad. Biol. Med. 1:51–57 (1985).Google Scholar
  34. 35.
    I. Emerit, J.N. Fabiani, O. Ponzio, A. Murphy, F. Lunel and A. Carpentier. Clastogenic factor in ischemia-reperfusion injury during open heart surgery: protective effect of allopurinol. Ann. Thorac. Sura. 46:619–624 (1988).CrossRefGoogle Scholar
  35. 36.
    I. Emerit, A. Autor, C. Auclair, A. Levy, S. Ensworth, M. Lahoud-Maghani, H. Stein and J.P. Camus. Role of oxygen free radicals in progressive systemic sclerosis (scleroderma). Proc. SFRR Biannual Meeting, Kyoto (1988), in press.Google Scholar
  36. 37.
    G. Brambilla, L. Sciaba, P. Faggin, A. Maura, U.M. Marinai, U.M. Ferro, and H. Esterbauer. Cytotoxicity, DNA fragmentation and sister chromatid exchange in Chinese hamster ovary cells exposed to the lipid peroxidation product 4-hydroxynonenal and homologous aldehydes. Mutat. Res. 171:169–176 (1986).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Ingrid Emerit
    • 1
  • Jean-Noel Fabiani
    • 1
  1. 1.15 rue de l’Ecole de Medicine Hospital BroussaisCNRS and University Paris VIParisFrance

Personalised recommendations