Improvement of Ischemic and Postischemic Mitochondrial Function by Deferrioxamine : The Role of Iron

  • H. van Jaarsveld
  • G. M. Potgieter
  • S. P. Barnard
  • S. Potgieter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 264)


Oxygen-derived free radicals have been implicated as a general mechanism of cell injury, including ischemia and reperfusion1,2. Superoxide anions and other reactive products of oxygen metabolism can be formed from subsequent intracellular reduction of oxygen, including hydrogen peroxide and the hydroxyl radical. However, in the myocardium and the mitochondria4 there exist a series of defence mechanisms to protect the cell against cytotoxic oxygen metabolites, which may be overwhelmed by an overproduction of oxygen free radicals.


Oxygen Free Radical Mitochondrial Oxidative Phosphorylation Myocardial Mitochondrion Krebs Henseleit Bicarbonate Buffer9 Cytosolic Iron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H.A. Kontos, M.L. Hess. Oxygen radicals and vascular damage. Adv. Exp. Med. Biol.. 15: 269–78 (1983).Google Scholar
  2. 2.
    G. Ambrosio, J.L. Sweier, W.E. Jacobus, M.L. Weisfeldt, J.T. Flaherty. Improvement of postischemic myocardial function and metabolism by administration of deferoxamine at the time of reflow: the role of iron in the pathogenesis of reperfusion injury. Circulation 76 (4): 906–915 (1987).PubMedCrossRefGoogle Scholar
  3. 3.
    R. Ferrari, C. Ceconi, S. Curella, A. Cargnoni, D. Medici. Oxygen free radicals and reperfusion on the cellular ability to neutrolise oxygen toxicity. J. Moll. Cell. Cardiol. 18 (Suppl. 4): 67–69 (1986).CrossRefGoogle Scholar
  4. 4.
    H. van Jaarsveld, A.J. Groenewald, G.M. Potgieter, S.P. Barnard, W.J.H. Vermaak, H.C. Barnard. Effect of normothermic ischemic cardiac arrest and of reperfusion on the free oxygen radical scavenger enzymes and xanthine oxidase (a generator of Superoxide anions). Enzyme 39: 8–16 (1988).PubMedGoogle Scholar
  5. 5.
    P. Menasche, C. Grousset, Y. Gauduel, C. Mouas, A. Piwnica. Prevention of hydroxyl formation: a critical concept for improving cardioplegia. Protective effect of deferoxamine. Circulation 76 (suppl. V): V180–185 (1987).Google Scholar
  6. 6.
    S. Sugiyana, Y. Miyazaki, K. Kotaka, T. Ozawa. On the mechanism of ischemia-induced mitochondrial dysfunction.Jap. Circ. J. 46: 296–302 (1982).CrossRefGoogle Scholar
  7. 7.
    J.R. Neely, H. Liebermeister, E.J. Battersby, H.E. Morgan. Effect of pressure development on oxygen consumption by isolated rat heart. Am. J. Physiol. 212: 804–814 (1974).Google Scholar
  8. 8.
    A. Lochner, I. van Niekerk, J.C.N. Kotze. Normothermic ischaemic cardiac arrest of the isolated perfused rat heart: effects of trifluoperazine and lysolecithin on mechanical and metabolic recovery. Basic Res.Cardiol. 80: 363–376 (1985).PubMedCrossRefGoogle Scholar
  9. 9.
    H.A. Krebs, K. Henseleit. Untersuchungen über die Harnstoff-Bildung im Tierkörper. Hoppe-Seylers. Z. Physiol.Chem. 210: 33–66 (1932).CrossRefGoogle Scholar
  10. 10.
    H. van Jaarsveld, G.M. Potgieter, A. Lochner. Changes in NADH-ubiquinone reductase (complex I) with autolysis in the rat heart as experimental model. Enzyme 35: 206–214 (1986).PubMedGoogle Scholar
  11. 11.
    H. Kahles, G.G. Göring, H. Nordbeck, C.J. Preusse, P.G. Spiekermann. Functional behaviour of isolated heart muscle mitochondria of isolated heart muscle mitochondria after in situ ischemia. Polarographic analysis of mitochondrial oxidative phosphorylation. Basic Res. Cardiol. 72: 563–574 (1977).PubMedCrossRefGoogle Scholar
  12. 12.
    G.S. Krause, K.M. Joyce, N.R. Nayini, C.L. Zonia, A.M. Garritano, T.J. Hoehner. Cardiac arrest and resuscitation: brain iron delocalization during reperfusion. Ann. Emerg. Med. 14: 1037–1043 (1985).PubMedCrossRefGoogle Scholar
  13. 13.
    O.H. Lowry, N.J. Rosenbrough, A.L. Farr, R.J. Randall. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265–275 (1951).PubMedGoogle Scholar
  14. 14.
    H. Nohl. A novel Superoxide radical generator in heart mitochondria. FEBS Lett. 214: 269–273 (1987).PubMedCrossRefGoogle Scholar
  15. 15.
    E. Röth, B. Törok, T. Zsoldos, B. Matkovics. Lipid peroxidation and scavenger mechanism in experimentally induced heart infarcts. Basic Res. Cardiol. 80 : 530–536 (1985).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • H. van Jaarsveld
    • 1
  • G. M. Potgieter
    • 1
  • S. P. Barnard
    • 1
  • S. Potgieter
    • 1
  1. 1.Dept. Chemical PathologyUniversity of the Orange Free StateBloemfonteinRepublic of South Africa

Personalised recommendations