Reduction of Toxicity and Increase of Antitumor Effect of Adriamycin by N-Acyl Dehydroalanines, a New Family of Free Radical Scavengers

  • P. Buc-Calderon
  • M. Praet
  • J. M. Ruysschaert
  • M. Roberfroid
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 264)


Free radicals are highly reactive chemical species, they abstract hydrogen atoms at sensitive sites, they add to olefinic C-atoms and they are substrates of one-electron exchange reactions. Thus they react easily with miscellaneous molecular targets. One of the main characteristics of free radical reactions is that they produce new free radicals, so that free radical processes propagate through a chain of reactions which cause not only structural but mainly functional disturbances at various cellular levels.


Antitumor Effect Free Radical Scavenger Serum Transaminase Level Radical Chain Reaction Free Radical Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H.G. Viehe, Z. Janousek, R. Merényi, and L. Stella, The capto-dative effect, Acc. Chem. Res. 18: 148 (1985).CrossRefGoogle Scholar
  2. 2.
    H.G. Viehe, R. Merényi, L. Stella, and Z. Janousek, Capto-dative substituent effects in synthesis with radicals and radicophiles, Angew. Chem. 18: 917 (1979).CrossRefGoogle Scholar
  3. 3.
    M. Roberfroid, H.G. Viehe and J. Remacle, Free radicals in drug research in: “Advances in drug research”, B. Testa, ed., Academic Press, London (1987).Google Scholar
  4. 4.
    P. Buc-Calderon and M. Roberfroid, Inhibition of Superoxide anion and hydroxyl radical-mediated processes by a new class of free radical scavengers: the N-acyl dehydroalanines, Free Rad. Res. Commun. 5: 159 (1988).CrossRefGoogle Scholar
  5. 5.
    P. Buc-Calderon, M. Praet, J.M. Ruysschaert and M. Roberfroid, Free radical modulation by N-substituted dehydroaglanines, a new way to improve therapeutic activity of anticancer drugs, Cancer Treat. Rev. 14: 379 (1987).Google Scholar
  6. 6.
    P. Buc-Calderon, M. Praet, J.M. Ruysschaert and M. Roberfroid, Increasing therapeutic effect and reducing toxicity of doxorubicin by Nacyl dehydroalanines, Eur. J. Cancer Cli. Oncol., in press (1989).Google Scholar
  7. 7.
    M. Praet, P. Buc-Calderon, G. Pollakis, M. Roberfroid and J.M. Ruysschaert, A new class of free radical scavengers reducing adriamycin mitochondrial toxicity, Biochem. Pharmacol. 37: 4617 (1988).PubMedCrossRefGoogle Scholar
  8. 8.
    S.K. Carter, Adriamycin -a review, J. Natl. Cancer Inst. 55: 1265 (1975).PubMedGoogle Scholar
  9. 9.
    C. Praga ., Adriamycin cardiotoxicity: a survey of 1273 patients, Cancer Treat. Rep. 63: 827 (1979).PubMedGoogle Scholar
  10. 10.
    N.R. Bachur, S.L. Gordon and M.V. Gee, A general mechanism for microsomal activation of quinone anticancer agents to free radical, Cancer Res. 38: 1745 (1978).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • P. Buc-Calderon
    • 1
  • M. Praet
    • 2
  • J. M. Ruysschaert
    • 2
  • M. Roberfroid
    • 1
  1. 1.Unité de Biochimie Cancérologique et Toxicologie, Dépt. de Sciences PharmaceutiquesUniv. Catholique de LouvainBelgium
  2. 2.Lab. de Chimie Physique des Macromolécules aux InterfacesUniv. Libre de BruxellesBelgium

Personalised recommendations