Urinary Biomarkers in Radiation Therapy of Cancer

  • David S. Bergtold
  • Christine D. Berg
  • Michael G. Simic
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 264)


The ability to monitor noninvasively the biological effect of a radiation dose in humans is potentially beneficial for screening cancer patients during the course of radiotherapy. Yet no universal approach exists for this purpose other than routine examination of patients and visible tumors, although in limited situations specific parameters are measured after treatment is completed (e.g., determinations of antibody levels after breast cancer therapy). In all cases, no appreciable indicators of the effects of the irradiation are apparent during the early part of the therapy regimen.


Enzymatic Repair Radiolytic Product Void Urine Sample Biological Dosimetry Thymine Glycol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. S. Bergtold, M. G. Simic, H. Alessio, and R. G. Cutler, Urine biomarkers for oxidative DNA damage, in: Oxygen Radicals in Biology and Medicine, M. G. Simic, K. A. Taylor, J. F. Ward, and C. von Sonntag, eds., Plenum Press, New York (1988) pp. 483–490.Google Scholar
  2. M. G. Simic and D. S. Bergtold, New approaches in biological dosimetry: urine biomarkers, in: The Medical Basis for Radiation Accident Preparedness, R. C. Ricks, S. A. Fry, and C. C. Lushbaugh, eds., in press.Google Scholar
  3. 3.
    M. G. Simic, D. S. Bergtold, and L. R. Karam, Generation of oxy radicals in biosystems, Mutation Res., in press.Google Scholar
  4. 4.
    M. M. Elkind and H. Sutton, Radiation response of mammalian cells grown in culture. I. Repair of x-ray damage in surviving Chinese hamster cells, Radiat. Res. 13:556–593 (I960).Google Scholar
  5. 5.
    C. von Sonntag, The Chemical Basis of Radiation Biology, Taylor and Francis, New York (1987).Google Scholar
  6. 6.
    M. G. Simic, S. V. Jovanovic, Free radical mechanisms of DNA base damage, jm: Mechanisms of DNA Damage and Repair, M. G. Simic, L. Grossman, A. C. Upton, eds., Plenum Press, New York (1986) pp. 39–50.Google Scholar
  7. 7.
    S. V. Jovanovic and M. G. Simic, Mechanisms of OH radical reaction with thymine and uracil derivatives, J. Am. Chem. Soc. 108:5968–5972 (1986).PubMedCrossRefGoogle Scholar
  8. 8.
    M. G. Simic, Mechanisms of inhibition of free-radical processes in mutagenesis and carcinogenesis, Mutation Res. 202:377–386 (1989).Google Scholar
  9. 9.
    E. C. Friedberg, DNA Repair, W. H. Freeman & Co., New York (1985).Google Scholar
  10. 10.
    M. Dizdaroglu and D. S. Bergtold, Characterization of free radicalinduced base damage in DNA at biologically relevant levels, Anal. Biochem. 156:182–188 (1986).Google Scholar
  11. 11.
    R. Cathcart, E. Schwiers, R. L. Saul, and B. N. Ames, Thymine glycol and thymidine glycol in human and rat urine: A possible assay for oxidative DNA damage, Proc. Natl. Acad. Sci. (USA) 81:5633–5637 (1984).CrossRefGoogle Scholar
  12. 12.
    K. C. Cundy, R. Kohen, and B. N. Ames, Determination of 8-hydroxydeoxy guanosine in human urine: A possible assay for in vivo oxidative DNA damage, in: Oxygen Radicals in Biology and Medicine, M. G. Simic, K. A. Taylor, J. F. Ward, and C. von Sonntag, eds., Plenum Press, New York (1988) pp. 479–482.Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • David S. Bergtold
    • 1
  • Christine D. Berg
    • 2
  • Michael G. Simic
    • 1
  1. 1.National Institute of Standards and TechnologyGaithersburgUSA
  2. 2.Department of Radiation MedicineGeorgetown University Medical SchoolUSA

Personalised recommendations