Nuclear Glutathione Transferases which Detoxify Irradiated DNA

  • Brian Ketterer
  • Gillian Fraser
  • David J. Meyer
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 264)


Free radicals have a number of toxic effects on the cell including the initiation of lipid peroxidation (Pryor, 1976) and the induction of potentially mutagenic lesions in DNA (Ames and Saul, 1986). Current knowledge suggests that some of the lesions in DNA may be peroxides. Irradiation of free thymidine gives a substantial yield of thymine hydroperoxides (Schulte Frohlinde and von Sonntag, 1985) and the incubation of irradiated DNA with GSH and tissue extracts containing GSH peroxidase activity brings about the catalytic oxidation of GSH to GSSG which is assumed to be due to the reduction of hydroperoxide moieties in DNA by GSH (Christopherson, 1969).


Glutathione Transferase Fatty Acid Hydroperoxide Methyl Uracil Benzoquinone Imine Ethylene Dibromide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ames, B. N. and Saul, R. L., 1985, Oxidative DNA damage as related to cancer and ageing, in:Genetic Toxicology of Environmental Chemicals,C. Ramil, B. Lambert and J. Magnusson, eds., Alan Liss, New York.Google Scholar
  2. Benedetti, A., Pompella, A., Fulceri, R., Romani, A. and Comporti, M., 1986, Detection of 4-hydroxynonenal and other lipid peroxidation products in the liver of bromobenzene poisoned miceBiochim. Biophys. Acta876:658.PubMedGoogle Scholar
  3. Bennett, C. F. and Yeoman, L. C., 1987, Microinjected glutathione S-transferase Yb subunits translocate to the cell nucleus, Biochem. J., 247:109.PubMedGoogle Scholar
  4. Bennett, F. C., Spector, D. L. and Yeoman, L. C., 1986, Non-histone protein BA is a glutathione S-transferase localized to interchromatinic regions of the cell nucleus, J. Cell Biol., 102:600.PubMedCrossRefGoogle Scholar
  5. Cadenas, E., Müller, A., Brigelius, R., Esterbauer, H. and Sies, H., 1983, Effects of 4-hydroxynonenal on isolated hepatocytes, Biochem. J., 214:479.PubMedGoogle Scholar
  6. Cathcart, R., Schwiers, E., Saul, R.L. and Ames, B.N., 1984, Thymine glycol and thymidine glycol in human and rat urine: A possible assay for DNA damage, Proc. Natl. Acad. Sci. USA, 81:5633.PubMedCrossRefGoogle Scholar
  7. Christopherson, B. O., 1969, Reduction of X-ray-induced DNA and thymine hydroperoxide by rat liver glutathione peroxidase, Biochem. Biophys. Acta, 186:387.Google Scholar
  8. Coles, B., Wilson, I., Wardman, P., Hinson, J. A., Nelson, S. D. and Ketterer, B., 1988, The spontaneous and enzymatic reaction of N-acetyl-p-benzoquinoneimine with glutathione: a stopped flow study, Arch. Biochem. Biophys., 264:253.PubMedCrossRefGoogle Scholar
  9. Cullis, P. M., Jones, G. D. D., Symons, M. C. R. and Lea, J. S., 1987, Electron transfer from protein to DNA in irradiated chromatin, Nature. 330:773.PubMedCrossRefGoogle Scholar
  10. Fjellstedt, T. A. Allen, R. H., Duncan, B. K. and Jakoby, W.B., 1973, Enzymatic conjugation of epoxides with glutathione, J. Biol. Chem., 248:3702.PubMedGoogle Scholar
  11. Flohé, L., 1982, Glutathione peroxidase brought into focus, in:Free Radicals in Biology, vol V,W.A. Pryor, ed., Academic Press, New York.Google Scholar
  12. Flohe, L. and Schlegel, W., 1971, Interzelluläre Verteilung des glutathione-peroxidase-systems in der rattenleber, Z. Physiol. Chem., 352:1401.CrossRefGoogle Scholar
  13. Floyd, R. A., Watson, J. J. and Wong, P. K. 1986, Hydroxyl free radical adduct of deoxyguanosine: Sensitive detection and mechanisms of formation, Free Rad. Res. Commun., 1:163.CrossRefGoogle Scholar
  14. Frenkel, K., Goldstein, M. S., Duker, N. and Teebor, G. W., 1981, Identification of the cis-thymine glycol moiety in chemically oxidized and gamma-irradiated deoxyribolnucleic acid, Biochemistry, 20:750.PubMedCrossRefGoogle Scholar
  15. Frenkel, K., Cummings, A., Solomon, J., Cadet, J., Steinberg, J.J. and Teebor, G.W., 1985, Quantitative determination of the 5-(hydroperoxy methyl) uracil moiety in the DNA of gamma-irradiated cells, Biochemistry, 24:4527.PubMedCrossRefGoogle Scholar
  16. Frenkel. K. and Chrzan, K., 1987, Hydrogen peroxide formation and DNA base modification by tumor promoter-activated polymorphonuclear leukocytes, Carcinogenesis, 8:455.PubMedCrossRefGoogle Scholar
  17. Grossman, A. and Wendel. A., 1983, Activity of selenoenzyme glutathione peroxidase with enzymically peroxidized phospholipids, Eur. J. Biochem., 195:549.CrossRefGoogle Scholar
  18. Hollstein, M. C., Brooks, P., Linn, S. and Ames, B. N., 1984, Hydroxymethyluracil DNA glycolsylase in mammalian cells, Proc. Natl. Acad. Sci. USA, 81:4003.PubMedCrossRefGoogle Scholar
  19. Jernström, B., Martinez, M., Meyer, D. J. and Ketterer, B., 1985, Glutathione conjugation of the carcinogenic and mutagenic electrophile (±)-7ß,8α-dihydroxy-9α, 10α-oxy-7,8,9,10-tetrahydrobenzo(a)pyrene catalysed by rat liver glutathione transferases, Carcinogenesis, 6:85.PubMedCrossRefGoogle Scholar
  20. Kasai, A.-H., Crain, P. F., Kuchino, Y., Nishimura, K., Oofsuyama, A and Tanooka, H. 1986, Formation of 8-hydroxyguanine moiety in cellular DNA by agents producing oxygen radicals and evidence for its repair, Carcinogenesis, 7:1849.PubMedCrossRefGoogle Scholar
  21. Ketterer, B., Meyer, D. J. and Clark, A. G., 1988, Soluble glutathione transferase isoenzymes, in:Glutathione Conjugation: Mechanisms and Biological Significance,H. Sies and B. Ketterer, eds., Academic Press, London.Google Scholar
  22. Kispert, A., Meyer, D. J., Lalor, E., Coles, B. and Ketterer, B., 1989, Purification and characterization of a labile rat glutathione transferase of the mu class, Biochem. J., 260:789.PubMedGoogle Scholar
  23. Kraus, P., 1980, Resolution, purification and some properties of three glutathione transferases from rat liver mitochondria, Hoppe-Seylers 2. Physiol Chem., 361:9.CrossRefGoogle Scholar
  24. Lawrence, R. A. and Burke, R. F., 1978, Species, Tissue and subcellular distribution of non-Se-dependent glutathione peroxidase activity, J. Nutr., 108:211.PubMedGoogle Scholar
  25. Mannervik, B. and Danielson, U.H. 198 8, Glutathione transferases -structure and catalytic activity, CRC Critical Reviews in Biochemistry, 23:283.PubMedCrossRefGoogle Scholar
  26. Marnett, L. J., Hurd, H. K., Hollstein, M. C., Levin, D. E., Esterbauer, H. and Ames, B. N., 1985, Naturally occurring carbonyl compounds are mutagens in Salmonella tester strain TA 104, Mutation Res., 148:25.PubMedCrossRefGoogle Scholar
  27. Morgenstern, R. and dePierre, J. 1988, Membrane-bound glutathione transferases isoenzymes, in;Glutathione Conjugation: Mechanisms and Biological Significance,H. Sies, and B. Ketterer, eds., Academic Press, London.Google Scholar
  28. Pryor, W. A., 1976, The role of free radical reactions in biological systems, in:Free Radicals in Biology, vol I-, W.A. Pryor, ed., Academic Press, New York.Google Scholar
  29. Prohaska, J. A. 1980, The glutathione peroxidase activity of glutathione S-transferases, Biochem. Biophys. Acta, 611:87.PubMedGoogle Scholar
  30. Sevanian, A. Muakassah-Kelly, S. F. and Montestruque, S., 1983, The influence of phospholipase A2 and glutathione peroxidase on the elimination of membrane lipid peroxides,Arch. Biochem. Biophys.233:441CrossRefGoogle Scholar
  31. Schulte-Frohlinde, P. and von Sonntag, C., 1985, Radiolysis of DNA and model systems in the presence of oxygen, in:Oxidative Stress,H. Sies, ed., Academic Press, New York.Google Scholar
  32. Slater, T. F., 1984, Free-radical mechansisms in tissue injury. Biochem. J., 222:1.PubMedGoogle Scholar
  33. Tan, K. H., Meyer, D. J., Belin, J. and Ketterer, B., 1984, Inhibition of microsomal lipid peroxidation by GSH transferase B and AA: Role of phospholipase A2, Biochem. J., 220:243.PubMedGoogle Scholar
  34. Taylor, C. W., Yeoman, L. C., Daskaly, I. and Busch, H., 1973, Two dimensional electrophoresis of proteins of citric acid prepared nuclei prepared with the aid of a Tissuemizer, Exptl. Cell. Res., 82:215.PubMedCrossRefGoogle Scholar
  35. von Sonntag, C. 1987, in:The Chemical Basis of Radiation Biology,Taylor and Francis, London.Google Scholar
  36. Waschke, S., Rufschläger, J., Bärwolff, D. and Langen, P., 1975, 5-Hydroxymethyl-2-deoxyuridine, a normal DNA constituent in certain Bacillus subtilus phages is cytostatic for mammalian cells, Nature, 255:629.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Brian Ketterer
    • 1
  • Gillian Fraser
    • 1
  • David J. Meyer
    • 1
  1. 1.Cancer Research Campaign Molecular Toxicology Research GroupUniversity College and Middlesex School of MedicineLondonUK

Personalised recommendations