Antioxidant Effects in Radioprotection

  • P. Bienvenu
  • F. Herodin
  • M. Fatome
  • J. F. Kergonou
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 264)


Reactive Oxygen Intermediates and Oxygen Metabolism. Reactive Oxygen intermediates such as O 2 - , H2O2 and OH might not be generated only during the initial radiolytic phase of radia tion injury, but also in a later metabolic phase, involving oxygen. The consumption of oxygen and simultaneous oxidative damage in vivo have been considered as well documented hypotheses. Therefore oxygen supply and utilization seems to share a pivotal role in radiation effects, as well as in other domains where oxidative injury may happen1,2,3. As Koppenol wrote: Thus… “Oxygen not only makes the formation of an oxidizing radical possible, it also exacerbates damage through chain reactions”…


Reactive Oxygen Intermediate Radioprotective Effect Prostaglandin Synthetase Acrodermatitis Enteropathica Stem Cell Survival 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Halliwell and M. C. Gutteridge, Oxygen toxicity, oxygen radicals, transition metals and disease, Biochem. J. 219:1 (1984).Google Scholar
  2. 2.
    H. Sies, Oxidative stress,Academic Press, New-York (1985).Google Scholar
  3. 3.
    J. Fehér, C. Csomos and A. Vereckei, Free radical reactions in medicine,Springer, Berlin (1987).CrossRefGoogle Scholar
  4. 4.
    W. H. Koppenol, The paradox of oxygen: thermodynamics versus toxicity, in: Oxidases and related redox systems,T. King, H. S. Mason, M. Morrison, eds., A. R. Liss, New York (1988).Google Scholar
  5. 5.
    H. Altmann, Primary damage in cells by ionizing radiation, Biophysik 1:329 (1964)CrossRefGoogle Scholar
  6. 6.
    A. H. Woods, P. R. O’Bar and S. L. Write, Trace metal behaviour in rabbits after whole body irradiation, Intern. J. Appl. Radiat. Isotopes 21:389 (1970).CrossRefGoogle Scholar
  7. 7.
    A. De Bruin, Biochemical toxicology of environmental agents,Elsevier, Amsterdam (1976).Google Scholar
  8. 8.
    W. F. Ward, A. Molteni, E. J. Fitzsimmons and J. Hinz, Serum coper concentrations as an index of lung inju ry in rats exposed to hemithorax irradiation, Radiat. Res. 114:613 (1988).PubMedCrossRefGoogle Scholar
  9. 9.
    C. Von Sonntag, The chemical basis of radiation biology Taylor &Francis, London (1987).Google Scholar
  10. 10.
    J. F. Kergonou, P. Bernard, M. Braquet and G. Rocquet, Effect of whole-body gamma irradiation on lipid peroxidation in rat tissues, Biochimie 63:555 (1981).PubMedCrossRefGoogle Scholar
  11. 11.
    J. M. Zajac and P. Bernard, Effects of whole body irradiation on the microsomal enzyme system and on cytochrome P-450 of rat liver, Enzymes, 27:19 (1982).Google Scholar
  12. 12.
    L. J. Marnett, Y. N. P. Chen, K. R. Maddipat, P. Pie and R. Labeque, Functional differentiation of cyclooxygenase and peroxidase. Activities of prostaglandin synthase by trypsin treatment. Possible location of a prosthetic heme-binding site, J. Biol. Chem. 263:6532 (1988).Google Scholar
  13. 13.
    M. Haurand and V. Ullrich. Isolation and characterization of thromboxane synthase as a cytochrome P-450 enzyme. Hoppe Seyler’s Z. Naturforsch 363, (1982).Google Scholar
  14. 14.
    H. Graf, H.H. Ruf and V. Ullrich. Prostacyclin synthase, a cytochrome P-450 enzyme, Ancrew. Chemie. Int. Ed. 22: 487 (1983).Google Scholar
  15. 15.
    G. A. Veldink and F. G. Vliegenthart, Lipoxygenases : nonheme iron-containing enzymes,Adv. Inorg. Biochem6:139 (1984).PubMedGoogle Scholar
  16. 16.
    M. B. Roberfroid, H. G. Viehe and J. Remacle, Free radicals in drug research, Adv. Drug. Res. 16:1 (1987) .Google Scholar
  17. 17.
    R. F. Del Maestro, H. H. Thaw, J. Bjork, M. Planker and K.-E. Arfors, Free radicals as mediators of tissue injury, Acta Physiol. Scand., suppl. 492:43 (1980).Google Scholar
  18. 18.
    P. R. Ortiz de Montellano, Cytochrome P-450, Plenum Press, New York, (1986).Google Scholar
  19. 19.
    E. Hietanen, M. Laitinen and O. Hänninen, Cytochrome P-450, Biochemistry, Biophysics and Environmental implications,Elsevier, Amsterdam (1982).Google Scholar
  20. 20.
    E. Bresnick, Metabolic activation, in: Mechanism of toxicity of chemical carcinogens and mutagens W.G. Flamm and R.I. Lorentzen, eds. Princeton Scientific Co, Princeton (1985).Google Scholar
  21. 21.
    M. J. Coon and A. D. N. Vaz, Role of cytochrome P-450 in hydrocarbon formation from xenobiotic and lipid hydroperoxides in: Oxidases and related redox systems,T.E. King, H.S. Mason and M. Morrison, eds., A.R. Liss, New York (1988).Google Scholar
  22. 22.
    V. J. Horgan, J. S. L. Philpot, B. W. Porter and D. B. Roodyn, Toxicity of autoxidized squalene and linoleic acid and of simpler peroxides, in relation to toxicity of radiation, Biochem. J. 67:551 (1957).PubMedGoogle Scholar
  23. 23.
    A. W. T. Konings and E. B. Drijver, Radiation effects on membranes, Radiat. Res. 80:494 (1979).PubMedCrossRefGoogle Scholar
  24. 24.
    M. S. Sandy, D. Dimonte and M. T. Smith, Relationships between intracellular vitamin E, lipid peroxidation and chemical toxicity in hepatocytes, Toxicol. Appl. Pharmacol. 93:288 (1988).Google Scholar
  25. 25.
    L. Giambarresi and A. J. Jacobs, Radioprotectants,in: Military Radiobiology, J. J. Conklin and R. I. Walker,eds., Academic Press, New York, (1987).Google Scholar
  26. 26.
    P. Bienvenu, F. Herodin, M. Fatome and J.F. Kergonou, Prostanoids may mediate the radioprotective effects of selenium and WR 2721, in: J. Favier and J. Neve eds, Selenium in Medicine and Biology, de Gruyter, Berlin (1988).Google Scholar
  27. 27.
    P. Bienvenu, M. Fatome, J.F. Kergonou and R. Ducousso, Acides gras essentiels et radioprotection. Comptesrendus Trav.S.S.A. 8:27 (1987).Google Scholar
  28. 28.
    J. M. Yuhas, Differential protection of normal and ma lignant tissues against the cytotoxic effects of mechlorethamine, Cancer Treat. Rep., 63:971 (1979).PubMedGoogle Scholar
  29. 29.
    E. L. Travis, The oxygen dependance of protection by aminothiols: implications for normal tissues and solid tumors, Int. J. Radiat. Oncol. Biol. Phys. 10:1495 (1984).PubMedCrossRefGoogle Scholar
  30. 30.
    H. P. A. Illing, Interaction of thiol-containing compounds with cytochrome P-450, Biochem. Soc. Trans. 6:89 (1978).PubMedGoogle Scholar
  31. 31.
    D. P. Mellor, Chemistry of chelation and chelating agents, in:The chelation of heavy metals, A. Catsch, A-E. Harmuth-Hoene and D.P. Mellor eds, Per qamon Press, Oxford (1979).Google Scholar
  32. 32.
    K. S. Kumar, A.M. Sancho, Y.N. Vaishnay and J.F. Weiss, Antioxidant properties of the radioprotector WR-2721 in red cell membrane model systems, Abstracts of International Conference on prostaglandin and lipid metabolism in radiation injury, AFRRI, Bethesda (1986).Google Scholar
  33. 33.
    M. Guichard, Bilan des essais cliniques en radiothérapie, in: Actualités sur les substances radioprotectrices, E. D. F. Comite de radioprotection, Paris (1988).Google Scholar
  34. 34.
    A. T. Turrisi, D. J. Glover, S. Hurwitz, J. Glick, A. L. Norfleet, C. Weiler, J. M. Yuhas and M. M. Kligerman, Final report of the phase I trial of simple dose WR 2721 (S-2-(3-aminopropylamino) ethylphosphorothioic acid), Cancer. Treat. Rep. 70:1384 (1986).Google Scholar
  35. 35.
    J. F. Weiss, R. L. Hoover and K. S. Kumar, Selenium pretreatment enhances the radioprotective effect and reduces the lethal toxicity of WR 2721, Free Rad. Res. Comms. 3:33 (1987). 36. T. L. Phillips, Rationale for initial clinical trials and future development of radioprotectors, Cancer Clinical Trials 3:165 (1980).Google Scholar
  36. 37.
    M. Fatome, F. Courteille, J.D. Laval and V. Roman, Ra dioprotective activity of ethylcellulose microspheres containing WR2721 after oval administration, Int. J. Radiat. Biol., 52:21 (1987).CrossRefGoogle Scholar
  37. 38.
    J. C Fantone, W. A. Marasco, L. J. Elgas and P. A. Ward, Stimulus specificity of prostaglandin inhibition of rabbit polymorphonuclear leukocyte lysosomal enzyme release and Superoxide anion production, Am. J. Pathol. 115:9 (1984).PubMedGoogle Scholar
  38. 39.
    V. Roman and F. Berleur. Les mécanismes d’action des radioprotecteurs chimiques, in: Actualités sur les substances radioprotectrices, Comité de Radioprotection, EDF, Paris (1988).Google Scholar
  39. 40.
    T. L. Waiden Jr, M. Patchen and S. L. Snyder, 16,16-dimethylprostaglandin E2 increases survival in mice following irradiation, Radiat. Res., 109:440 (1987).CrossRefGoogle Scholar
  40. 41.
    T. L. Waiden Jr, Leukotriene C4 induces radioprotection in part by a hypoxic mechanism, Abstract2nd annual program review, AFRRI, Bethesda (1988).Google Scholar
  41. 42.
    J. W. Finley and D.E. Schwass. Xenobiotic metabolism: nutritional effects, A.C.S., Washington (1985).CrossRefGoogle Scholar
  42. 43.
    Z. M. Bacq, Chemical protection against ionizing radiation, Thomas, Springfield(1965).Google Scholar
  43. 44.
    M. Fatome, La radioprotection chimique,Radioprotection16:113 (1981).Google Scholar
  44. 45.
    F. Nygaard, and M.G. Simic. Radioprotectors and anticarcinogens, Academic Press, New-York, (1983).Google Scholar
  45. 46.
    M. Fatome. Les substances radioprotectrices. in: Actua-lités sur les substances radioprotectrices, Comité de Radioprotection, EDF, Paris (1988).Google Scholar
  46. 47.
    Z. M. Bacq, A. Herve and P. Fischer, Rayons X et agents de chelation, Bull. Acad. Roy. Med. Beige 18:226 (1953).Google Scholar
  47. 48.
    H. Laser, The oxygen effect in ionizing radiation, Nature 174:753 (1954).PubMedCrossRefGoogle Scholar
  48. 49.
    L. Frank, D.L. Wood, R.J. Roberts, Effects of diethyl-dithiocarbamate on oxygen toxicity and lung enzyme activity in immature and adult rats, Biochem. Pharm.. 27: 251 (1978).PubMedCrossRefGoogle Scholar
  49. 50.
    J. J. Pocidalo, H. Mansour, P. Lacombe, M. Levacher, B. Rouveix and M.A. Gougerot, Immunomodulation par le diethyldithiocarbamate (Immuthiol): mise en évidence de propriétés immunoprotectrices anti-oxydantes, in: Immunomodulateurs et thérapeutique antiinfectieuse, J.J. Pocidalo, J.P. Couland, F. Vachon and J.L. Vilde eds., Arnette, Paris (1986).Google Scholar
  50. 51.
    L. H. Rome, W.E.M. Lands, G.J. Roth and P.M. Majerus, Aspirin as a quantitative acetylating reagent for the fatty acid oxygenase that forms prostaglandins, Prostacrlandins., 11:23 (1976).CrossRefGoogle Scholar
  51. 52.
    R. E. Heikkila, Inactivation of Superoxide dismutase by diethyldithiocarbamate, in: Handbook of methods for oxygen radical research, R.A. Greenwald, ed., CRC Press Bocca Raton, (1985).Google Scholar
  52. 53.
    G. E. Miller, M. A. Zemaitis and F. E. Greene, Mecha nisms of diethyldithiocarbamate induced loss of cytochrome P-450 from rat liver, Biochem. Pharm. 32:2433 (1983).PubMedCrossRefGoogle Scholar
  53. 54.
    K. S. Kumar, A.M. Sancho and J.F. Weiss, Novel interaction of diethyldithiocarbamate with the glutathione/glutathione peroxidase system, Int. J. Radiat. Oncol. Biol. Phvs., 12:1463 (1986).CrossRefGoogle Scholar
  54. 55.
    B. Robertson, L. Gahring, R. Newton and R. Daynes, In vivo administration of interleukin 1 to normal mice depresses their capacity to elicit contact hypersensitivity responses: prostaglandins are involved in this modification of immune function, J. Invest. Dermatol. 88:380 (1987).PubMedCrossRefGoogle Scholar
  55. 56.
    D. N. Tatakis, N. Weinfeld and R. Ziak, Interleukin-1 stimulates PgE2 synthesis by osteoblastic cells-regulatory factors, J. Dent. Res. 65:291 (1986).Google Scholar
  56. 57.
    R. Neta, S. Douches and J. J. Oppenheim, Interleukin 1 is a radioprotector, J. Immunol. 136:2483 (1986).PubMedGoogle Scholar
  57. 58.
    W. F. Ward, A. Shih-Hoellwarth, P.M. Johnson, Survival of penicillamine-treated mice following Whole-body irradiation, Radiat. Res.. 81:131 (1980)PubMedCrossRefGoogle Scholar
  58. 59.
    A. W. Girotti, J.P. Thomas and J.E. Jordan, Xanthine Oxidase-Catalyzed crosslinking of cell membrane proteins, Arch. Biochem. Biophys., 251:639 (1988).CrossRefGoogle Scholar
  59. 60.
    C. Navaro, G. Esolar, J.E. Banos, L. Casanovas and O. Bulbena, Effects of zinc acexamate in gastric mucosal production of prostaglandin E2 in normal and stressed rats, Prostaql. Leuko. Ess. Fatty Ac. 33:75 (1988) .CrossRefGoogle Scholar
  60. 61.
    G. W. Evans, and P.E. Johnson, Defective prostaglandin synthesis in acrodermatitis enteropathica,Lancet 1:52 (1977).PubMedCrossRefGoogle Scholar
  61. 62.
    G. L. Floersheim, N. Chiodetti and A. Bieri, Differential radioprotection of bone marrow and tumour cells by zinc aspartate, Brit. J. Radiol. 61:501 (1988).PubMedCrossRefGoogle Scholar
  62. 63.
    A. Petkau, W.S. Chelack, S.D. Pleskach, B. Meeker and C.M. Brady, Radiation protection of mice by Superoxide dismutase, Biochem.Biophys.Res.Commun 65:886 (1975).PubMedCrossRefGoogle Scholar
  63. 64.
    L. L. Mitchell, K. G. D. Allen, and M. M. Mathias, Copper deficiency depresses rat aortal Superoxide dismutase activity and prostacyclin synthesis, Prosta glandins 35:977 (1988).Google Scholar
  64. 65.
    J. R. J. Sorenson, Bis (3,5-diisopropyl-salicylato) copper (II), a potent radioprotectant with Superoxide dismutase mimetic-activity, J. Med. Chem. 27:174 (1984) .CrossRefGoogle Scholar
  65. 66.
    M. J. Parnham and E. Graf, Seleno-organic compounds and the therapy of hydroperoxide -linked pathological conditions, Biochem. Pharm. 36:3095 (1987).PubMedCrossRefGoogle Scholar
  66. 67.
    G. Batist, A.Reynaud A., A.G. Katki, E.L. Travis, M.C. Shoemaker, R.F. Greene et C.E. Myers. Enzymatic defense against radiation damage in mice. Effect of Selenium and Vitamin E depletion, Biochem. Pharmacol., 35:601 (1986).PubMedCrossRefGoogle Scholar
  67. 68.
    G. W. Burton, K. H. Cheeseman, K. V. Ingold and T. F. Slater, Lipid antioxidants and products of lipid peroxidation as potential tumor protective agents, Biochem. Soc. Trans. 11:262 (1983).Google Scholar
  68. 69.
    M. A. Brown, Resistance of human Erythrocytes contai ning elevated levels of vitamin E to radiation -induced hemolysis. Radiat. Res.. 95 (2), 303–31 (1983).PubMedCrossRefGoogle Scholar
  69. 70.
    A. Raleigh and F.Y. Shum, Radioprotection in model lipid membranes by hydroxyl radical scavengers: supplementary role for alpha-tocopherol in scavenging secondary peroxy radicals. in: Radioprotectors anticarcinogens, O.F. Nygaard and M.G. Simic, eds.Academic. Press,New-York (1983).Google Scholar
  70. 71.
    R. M. Roy, M.A. Malick and G.M. Clark, Increased hematopoietic stem cell survival in mice injected with tocopherol after X-irradiation, Strahlenther. 58:312 (1982).Google Scholar
  71. 72.
    C. C. Reddy, C. E. Thomas and R.W. Scholz, Inadequate vitamin E and selenium nutrition, in: Xenobiotic metabolism, nutritional effects, J. W. Finley and D. E. Schwass, eds., ACS, Washington (1985).Google Scholar
  72. 73.
    R. V. Panagamala, D.G. Cornwell. The effects of Vitamin E on arachidonic acid metabolism. Ann. N.Y. Acad. Sci., 393:376 (1982).CrossRefGoogle Scholar
  73. 74.
    M. Fatome, Les Aminothiols et leurs derives, in: Actua-lités sur les substances radioprotectrices, Comité de Radioprotection, EDF, Paris (1988).Google Scholar
  74. 75.
    W. E. M. Lands, R. J. Kulmacz and P. J. Marshall, Lipid peroxide actions in the regulation of prostaglandin biosynthesis, in: Free radical in biology VI, W. A. Pryor, ed., Academic Press, New-York,(1984).Google Scholar
  75. 76.
    S. N. Meydani, M. Meydani, C.P. Verdon, A.A. Shapiro, J.B. Blumberg and K.C. Hayes, Vitamin E supplementation supresses prostaglandin E2 synthesis and enhances the immune response of aged mice, Mech. Ageing Devel. 34:191 (1986).CrossRefGoogle Scholar
  76. 77.
    J. Yatsuyanagi, K. Iwai and T. Ogiso, Suppressive effect of zinc on some functions of neutrophils: studies with carrageenan-induced inflammation in rats, Chem. Pharm. Bull. 35:699 (1987).PubMedCrossRefGoogle Scholar
  77. 78.
    M. Haberal, V. Mavi and G. Oner, The stabilizing effect of vitamin E, selenium and zinc on leucocyte membrane permeability: a study in vitro, Burns 13:118 (1987) .CrossRefGoogle Scholar
  78. 79.
    J. E. Packer, T.F. Slater, R.L. Willson, Direct observation of a free radical interaction between Vitamin E and Vitamin C., Nature, 278:737 (1979).PubMedCrossRefGoogle Scholar
  79. 80.
    C. Camisa, B. Eisenstat, A. Ragaz and G. Weismann, The effects of retinoids on neutrophil functions in vivo, J. Am. Acad. Dermatol., 6:620 (1982).PubMedCrossRefGoogle Scholar
  80. 81.
    A. M. Michelson, K. Puget and P. Durosay. La superoxyde dismutase et la pathologie des radicaux libres, C.R. Soc.Biol., 179:429 (1985).Google Scholar
  81. 82.
    J. R. Maisin, A. Kondi-Tamba, G. Mattelin, Polysaccha-rides induce radioprotection of murine hemopoietic stem cells and increase the LD 50/30 days, Radiat. Res. 105:276 (1986).PubMedCrossRefGoogle Scholar
  82. 83.
    M. L. Patchen and T. J. Mac Vittie, Comparative effects of soluble and particulate glucan on survival in irradiated mice, J. Biol. Resp. Mod. 5:45 (1986).Google Scholar
  83. 84.
    Y. Matsubara, T. Shida, K. Ishioka, S. Egawa, T. Inada and K. Machida, Protective effect of zinc against lethality in irradiated mice. Environ. Res. 41:558 (1986).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • P. Bienvenu
    • 1
  • F. Herodin
    • 1
  • M. Fatome
    • 1
  • J. F. Kergonou
    • 1
  1. 1.Centre de Recherches du Service de Santé des ArméesLA Tronche/GrenobleFrance

Personalised recommendations