Advertisement

Oxidative Damage in Chronic Heart Failure: Protection by Captopril Through Free Radical Scavenging?

  • M. Chopra
  • J. McMurray
  • J. McLay
  • A. Bridges
  • N. Scott
  • W. E. Smith
  • J. J. F. Belch
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 264)

Summary

The pathogenesis of heart failure is not yet fully understood. In animal models there is some evidence to suggest a role for free radicals (FRs). We have investigated malondialdehyde - LM in the plasma of patients with heart failure and found it to be raised when compared to controls. We present data to show that Captopril, a drug with an ACE inhibitory effect is a FR scavenger both in vitro and ex-vivo in patients with heart failure.

Keywords

Angiotensin Converting Enzyme Chronic Heart Failure Chronic Heart Failure Patient Chronic Congestive Heart Failure Multicentre Research Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Goodman and P.L. Hochstein, Generation of free radicals and lipid peroxidation by redox cycling of adriamycin and duanomycin, Biochem. Biophys. Res. Comm. 77:797 (1977).PubMedCrossRefGoogle Scholar
  2. 2.
    P.C. Gervasi et al, Superoxide anion production by adriamycin from cardiac sarcosomes and by mitochondrial NADH DHase, Anticancer Res. 6(5):1231 (1986).PubMedGoogle Scholar
  3. 3.
    K. Prasad, B. Kalra and B. Bharadwaj, Phagocytic activity in blood of dogs with chronic congestive heart failure, Clin. Invest. Med. 10:1354 (1987).Google Scholar
  4. 4.
    V.B. Dzau et al, Prostaglandins in severe congestive heart failure. Relation to activation of the Renin-Angiotensin system and hyponatremia, N. Engl. B. Med. 310:345 (1984).Google Scholar
  5. 5.
    D.G. Graham et al, Auto-oxidation versus covalent binding of quinones as the mechanism of toxicity of dopamine, 6-hydroxydopamine and related compounds towards C1300 neuroblastoma cells in vitro, Mol. Pharm. 14:644 (1978).Google Scholar
  6. 6.
    M.L. Hess, E. Okabe and H.A. Kontos, Proton and free oxygen radical interaction with the calcium transport system of cardiac sarcoplasmic reticulum, B. Mol. Cell. Cardiol. 13:767 (1981).CrossRefGoogle Scholar
  7. 7.
    Captopril Multicentre Research Group, A placebo controlled trial of captopril in refractory chronic congestive heart failure, B. Am. Coll. Cardiol. 2:755 (1983).CrossRefGoogle Scholar
  8. 8.
    J.G.F Cleland et al, Captopril in heart failure. A double blind controlled trial, Br. Heart 3. 52:530 (1984).CrossRefGoogle Scholar
  9. 9.
    G. Ertl, R.A. Kloner, W. Alexander and E. Braunwald, Limitation of experimental infarct size of an angiotensin -converting enzyme inhibitor, Circul. 65:40 (1982).CrossRefGoogle Scholar
  10. 10.
    W.H. Van Gilst, P.A. DeGraeff, H. Wesselingand C.D.J Dahangen, Reduction of reperfusion arrhythmias in the ischaemic isolated rat heart by angiotensin converting enzyme inhibitors: a comparison of captopril, enalpril and HOE 498, B. Cardiovasc. Pharm. 8:722 (1986).Google Scholar
  11. 11.
    M.R.F.Martin et al, Captopril: a new treatment for rheumatoid arthritis? Lancet 1:1325 (1984).PubMedCrossRefGoogle Scholar
  12. 12.
    W.H. Betts, L.G. Cleland, D.J. Gee and M.W. Whitehouse, Effects of D-pencillamine on a model of oxygen derived free radical mediated tissue damage, Actions 14:283 (1984).CrossRefGoogle Scholar
  13. 13.
    R.A. Cuperus, A.D. Muijsersand R. Weaver, Antiarthritic drugs containing thiol groups scavenge hypochloride and inhibit its formation by myeloperoxidase from human leucocytes: a therapeutic mechanism of these drugs in rheumatoid arthritis, Arth. Rheum. 28:1228 (1985).CrossRefGoogle Scholar
  14. 14.
    C.B. McNeil, et al, A relationship between thiols and the Superoxide ion. FEBS Letts, 133(1):175 (1981).CrossRefGoogle Scholar
  15. 15.
    S.D. Aust, Lipid peroxidation, in: Handbook of Methods for Oxygen Radical Research, R.A. Greenwald, ed., CRC Press Inc. Boca Raton, Florida, (1987).Google Scholar
  16. 16.
    H.P. Misra and I. Fredovich, Superoxide dismutase: A photochemical augmentation assay, Arch. Biochem. Biophys. 181:308 (1977).PubMedCrossRefGoogle Scholar
  17. 17.
    M. Chopra, J.J.F Belch, W.E. Smith, A comparison of the free radical scavenging activity of leucotrienes and prostaglandins, Free Rad. Res. Comm. 5(2):95 (1988).CrossRefGoogle Scholar
  18. 18.
    K.L. Duchin et al, Captopril kinetics, Clin. Pharm. Ther. 31(4):452 (1982).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • M. Chopra
  • J. McMurray
    • 1
  • J. McLay
    • 1
  • A. Bridges
    • 2
  • N. Scott
  • W. E. Smith
    • 3
  • J. J. F. Belch
  1. 1.Dept. of Medicine, Clinical PharmacologyStrathclyde UniversityGlasgowScotland
  2. 2.Dept. of CardiologyStrathclyde UniversityGlasgowScotland
  3. 3.Ninewells Hospital, Dundee and Dept. of ChemistryStrathclyde UniversityGlasgowScotland

Personalised recommendations