Zinc — a Redox-Inactive Metal Provides a Novel Approach for Protection Against Metal-Mediated Free Radical Induced Injury: Study of Paraquat Toxicity in E. Coli

  • Mordechai Chevion
  • Pnina Korbashi
  • Joshua Katzhandler
  • Paul Saltman
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 264)


The essential mediatory role of copper and iron in a variety of free radical-induced injuries, including paraquat-induced biological damage has been recently demonstrated. It was postulated that these transition metals undergo cyclic redox reactions, and serve as centers for repeated production of hydroxyl radical, which are the ultimate deleterious agents. Additionally, we had presented evidence indicating efficient protection against paraquat toxicity by agents commonly employed (chelators, chemical scavengers and protecting enzymes).

In this study we have used theE. Coil model in order to develop a new approach for protection against paraquat-induced metal-mediated cellular injury. It entails the administration of excess zinc (up to 50 fold over copper), which results in an inhibition of the toxic effect of paraquat. Lineweaver- Burk analysis demonstrates the competitive mode of this inhibition. The suggested mechanism involves the displacement of the redox-active copper (or iron) from its binding site and by this diverting the site of repeated production of free radicals. Thus, use of redox-inactive metals, which possess high similarity of their ligand chemistry, to that of iron and copper but are of relative low toxicity by themselves, should be considered for intervention in paraquat toxicity and in other metal-mediated free radical-induced injurious processes.


Methyl Viologen Bacterial Killing Bacterial Inactivation Competitive Mode Paraquat Toxicity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Calderbank, A. (1968) Advn. Pest. Control Res. 2, 127–131.Google Scholar
  2. 2.
    Dodge, A.D. (1971) Endeavour 111, 130–135.CrossRefGoogle Scholar
  3. 3.
    Dasta, J.F. (1978) Am. J. Hosp. Pharm. 25, 1368–1372.Google Scholar
  4. 4.
    Autor, A.P. (1974) Life Sci. 14, 1309–1319.PubMedCrossRefGoogle Scholar
  5. 5.
    Naito, H., and Yamashita, M. (1987) Human Toxicol. 2, 87–89.CrossRefGoogle Scholar
  6. 6.
    Hassan, H.M., and Fridovich, I. (1978) J. Biol. Chem. 253, 8143–8148.PubMedGoogle Scholar
  7. 7.
    Hassan, H.M., and Fridovich, I. (1979) J. Biol. Chem. 254, 10846–10852.PubMedGoogle Scholar
  8. 8.
    Hassan, H.M., and Fridovich, I. (1979) Arch. Biochem. Biophys. 196, 385–395.Google Scholar
  9. 9.
    Delval, P.M., and Gillespie, D.J. (1985) Crit. Care Med. 13, 1056–1060.CrossRefGoogle Scholar
  10. 10.
    Smith, L.L. (1986) Annu. Rev. Physiol. 42, 681 -692.CrossRefGoogle Scholar
  11. 11.
    McCord, J.M., and Day, E.D. (1978) FEBS Lett. 22,139–142.CrossRefGoogle Scholar
  12. 12.
    Halliwell, B. (1978) FEBS Lett. 22, 321 -326.CrossRefGoogle Scholar
  13. 13.
    Aust, S.D., Morehouse, L.A., and Thomas, C.E. (1985) J. Free Rad. Biol. Med. 1, 3–25.Google Scholar
  14. 14.
    Halliwell, B., and Gutteridge, J.M.C. (1986) Arch. Biochem. Biophys. 246. 501–514.11.PubMedCrossRefGoogle Scholar
  15. 15.
    Kohen, R., and Chevion, M. (1985) Free Rad. Res. Commun. 1, 79–88.Google Scholar
  16. 16.
    Korbashi, P., Kohen, R., Katzhendler, J., and Chevion, M. (1985) J. Biol. Chem. 221, 12472–12476.Google Scholar
  17. 17.
    Kohen, R., and Chevion, M. (1988) Biochemistry 2Z, 2597–2603.CrossRefGoogle Scholar
  18. 18.
    Samuni, A., Chevion, M., and Czapski, G. (1981) J. Biol. Chem. 225, 12632–12635.Google Scholar
  19. 19.
    Shinar, E., Navok, T., and Chevion, M. (1983) J. Biol. Chem. 253, 14778–14783.Google Scholar
  20. 20.
    Navok, T., and Chevion, M. (1984) Biochem. Biophys. Res. Commun. 122, 297–303.CrossRefGoogle Scholar
  21. 21.
    Levine, R.L, Oliver, C.N., Fulks, M.R., and Stadtman, E.R. (1980) Proc. Natl. Acad. Sci. USA ZS, 2120–2124.Google Scholar
  22. 22.
    Chevion, M. (1988) Free Rads Biol. Med. 5, 27–37.Google Scholar
  23. 23.
    Kohen, R., Korbashi, P., and Chevion, M. (1983) in: Paraquat Toxicity is Mediated by Transition Metal Ions, Abstract of the First Meeting of Israel Societies of Life Science, Jerusalem, October, 1983.Google Scholar
  24. 24.
    Sutton, H.C., and Winterbourn, C.C. (1984) Arch. Biochem. Biophys. 235. 106–115.PubMedCrossRefGoogle Scholar
  25. 25.
    Winterbourn, C.C., and Sutton, H.C. (1984) Arch. Biochem. Biophys. 225, 116–126.CrossRefGoogle Scholar
  26. 26.
    Kohen, R., and Chevion, M. (1985) Biochem. Pharmacol. 34,1841–1843.Google Scholar
  27. 27.
    Hegetschweiler, K., Saltman, P., Dalvit, C., and Wright, P. (1987) Biochem. Biophys. Acta 912 (3)384–397.PubMedCrossRefGoogle Scholar
  28. 28.
    Cotton, F.A., and Wilkison, G. (1972) in: Advanced Inorganic Chemistry, New York: Interscience Publishing, 1972.Google Scholar
  29. 29.
    Eguchi, L.A., and Saltman, P. (1987) Inorg. Chem. 26, 3665–3669.CrossRefGoogle Scholar
  30. 30.
    Eguchi, L.A., and Saltman, P. (1987) Inorg. Chem. 26, 3669–3672.CrossRefGoogle Scholar
  31. 31.
    Stability Constants of Metal-Ion Complexes, Part B: Organic Ligands: IUPAC Chemical Data Series,No. 22, (Perrin, D.D., ed.) Pergamon Press, Oxford (1979).Google Scholar
  32. 32.
    Segel, I.H. (1975) in: Enzyme Kinetics, pp. 161–166, A Wiley-lnterscience Publications, John Wiley and Sons, New York.Google Scholar
  33. 33.
    Anderegg, G. (1982) Pure Appl. Chem. 54, 2693–2758.Google Scholar
  34. 34.
    Willson, R.L. (1977) In: Iron Metabolism, Ciba Foundation Symposia, 51, 331–354.5Google Scholar
  35. 35.
    Willson, R.L. (1977) New Scientist, 1 December, 558–560.Google Scholar
  36. 36.
    Chvapil, M. (1973) Life Sci. 13, 1041–1049.PubMedCrossRefGoogle Scholar
  37. 37.
    Girotti, A.W., Thomas, J.P., and Jordan, J.E. (1986) Arch. Biochem. Biophys. 251. 639–653.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Mordechai Chevion
    • 1
    • 4
  • Pnina Korbashi
    • 1
  • Joshua Katzhandler
    • 2
  • Paul Saltman
    • 3
  1. 1.The Department of Cellular BiochemistryHebrew University of JerusalemIsrael
  2. 2.The Department of Pharmaceutical ChemistryHebrew University of JerusalemIsrael
  3. 3.The Department of BiologyUniversity of California at San DiegoLa JollaUSA
  4. 4.The Molecular Toxicology Research GroupOklahoma Medical Research FoundationOklahoma CityUSA

Personalised recommendations