Approaches to Gene Therapy in the CNS: Intracerebral Grafting of Fibroblasts Genetically Modified to Secrete Nerve Growth Factor

  • Michael B. Rosenberg
  • Mark H. Tuszynski
  • Kazunari Yoshida
  • Theodore Friedmann
  • Fred H. Gage
Part of the Advances in Behavioral Biology book series (ABBI, volume 36)


Considerable effort in recent years has been applied towards the development of methods for the genetic modification of mammalian cells to correct disease phenotypes in vivo, an approach that has been named gene therapy (1). In an ideal gene therapy system, the new genetic information would be applied directly to the affected tissue. This direct approach has not yet been attempted, because the current methods of gene transfer are limited to replicating cells. Because of this and other technical limitations, approaches to gene therapy in animal models of human disease have relied on removing mitotic cells from the target tissue, genetically modifying them in culture, and then returning the cells to the animal. Most of these studies have used genetic transducing vectors derived from murine retroviruses to introduce foreign genes (transgenes) into target cells, because retrovirus vectors offer several advantages over other current methods of gene transfer (2): 1) infection by retrovirus vectors is extremely efficient for a broad range of cell types and species, with up to 100% of the target cells expressing the transgene; 2) the viral genomes have a relatively large capacity for foreign DNA; and 3) infection generally causes little or no genetic or metabolic damage to recipient cells. Other methods of gene transfer, which utilize biochemical or physical means to introduce transgenes into cells, suffer from serious limitations in comparison. The first methods developed involve incubating cells with DNA complexed with DEAE-dextran (3) or calcium phosphate (4). More recent methods use direct microinjection (5), electric fields (electroporation) (6), liposomes (lipofection) (7), and tungsten microprojectiles (8).


Gene Therapy Nerve Growth Factor Cholinergic Neuron Medial Septum Lysosomal Storage Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Friedmann, T. and Roblin, R. (1972) Gene therapy for human genetic disease? Science 175: 949–955.CrossRefGoogle Scholar
  2. 2.
    Miller, A.D., Jolly, D.J., Friedmann, T. and Verma, I.M. (1983) A transmissible retro-virus expressing human hypoxanthine phosphoribosyltransferase (HPRT): Gene transfer into cells obtained from humans deficient in HPRT. Proc. Natl. Acad. Sci. USA 80: 4709–4713.CrossRefGoogle Scholar
  3. 3.
    McCutchan, J.H. and Pagano, J.S. (1968) Enhancement of the infectibility of simian virus 40 DNA with diethylaminoethyl dextran. J. Nat. Cancer. Inst. 41: 351–356.Google Scholar
  4. 4.
    Graham, F.L. and Van der Eb, A.J. (1973) A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 52: 456–467.CrossRefGoogle Scholar
  5. 5.
    S. Capecchi, M. (1980) High efficiency transformation by direct microinjection of DNA into cultured mammalian cells. Cell 22: 479–488.CrossRefGoogle Scholar
  6. 6.
    Shigekawa, K. and Dower, W.J. (1988) Electroporation of eukaryotes and prokaryotes: A general approach to the introduction of macromolecules into cells. BioTechniques 6: 742–746Google Scholar
  7. 7.
    Feigner, P.L., Gadek, T.R., Holm, M., Roman, R., Chan, H.W., Wenz, M., Northrup, J.P., Ringold, G.M. and Danielsen, M. (1987) Lipofection: A highly efficient, lipid-mediated DNA-transfection procedure. Proc. Natl. Mad. Sci. USA 84: 7413–7417.CrossRefGoogle Scholar
  8. 8.
    Klein, T.M., Wolf, E.D., Wu, R. and Sanford, J.C. (1987) High velocity micro-projectiles for delivering nucleic acids into living cells. Nature 327: 70–73.CrossRefGoogle Scholar
  9. 9.
    Miller, A.D., Eckner, R.J., Jolly, D.J., Friedmann, T. and Verma, I.M. (1984) Expression of a retrovirus encoding human HPRT in mice. Science 225: 630–632.CrossRefGoogle Scholar
  10. 10.
    Williams, D.A., Lemischka, I.R., Nathan, D.G. and Mulligan, R.C. (1984) Introduction of new genetic material into pluripotent haematopoietic stem cells of the mouse. Nature 310: 476–480.CrossRefGoogle Scholar
  11. 11.
    Eglitis, M.A., Kantoff, P., Gilboa, E. and Anderson, W.F. (1985) Gene expression in mice after high efficiency Rtroviral-mediated gene transfer. Science 230: 1395–1398.CrossRefGoogle Scholar
  12. 12.
    Selden, R.F., Skoskiewicz, M.J., Howie, K.B., Russell, P.S. and Goodman, H.M. (1987) Implantation of genetically engineered fibroblasts into mice: Implications for gene therapy. Science 236: 714–7 18.Google Scholar
  13. 13.
    St.Louis, D. and Verma, I.M. (1988) An alternative approach to somatic cell gene therapy. Proc. Natl. Acad. Sci. USA 85: 3150–3154.CrossRefGoogle Scholar
  14. 14.
    Palmer, T.D., Thompson, A.R. and Miller, A.D. (1989) Production of human factor IX in animals by genetically modified skin fibroblasts: Potential therapy for hemophilia B. Blood 73: 438–445.Google Scholar
  15. 15.
    Morgan, J.R., Barrandon, Y., Green, H. and Mulligan, R.C. (1987) Expression of an exogenous growth hormone gene by transplantable human epidermal cells. Science 237: 1476–1479.CrossRefGoogle Scholar
  16. 16.
    Wolff, J.A., Yee, J.-K., Skelly, H.F., Moores, J.C., Respess, J.G., Friedmann, T. and Leffert, H. (1987) Expression of retrovirally transduced genes in primary cultures of adult rat hepatocytes. Proc. Natl. Acad. Sci. USA 84: 3344–3348.CrossRefGoogle Scholar
  17. 17.
    Ledley, F.D., Darlington, G.J., Hahn, T. and Woo, S.L.C. (1987) Retroviral gene transfer into primary hepatocytes: Implications for genetic therapy of liver-specific functions. Proc. Natl. Acad. Sci. USA 84: 5335–5339.CrossRefGoogle Scholar
  18. 18.
    Palella, T.D., Silverman, L.J., Schroll, C.T., Homa, F.L., Levine, M. and Kelley, W.N. (1988) Herpes simplex virus-mediated human hypoxanthine-guanine phosphoribosyltransferase gene transfer into neuronal cells. Mol. Cell. Biol. 8: 457–460.Google Scholar
  19. 19.
    Geller, A.I. and Breakefield, X.O. (1988) A defective HSV-1 vector expresses Escherichia coli ß-galactosidase in cultured peripheral neurons. Science 241: 1667–1669.CrossRefGoogle Scholar
  20. 20.
    Williams, L.R., Varon, S., Peterson, G.M., Wictorin, K., Fischer, W., Bjorklund, A. and Gage, F.H. (1986) Continuous infusion of nerve growth factor prevents basal forebrain neuronal death after fimbria-fomix transection. Proc. Natl. Acad. Sci. USA 83: 7 9231–9235.CrossRefGoogle Scholar
  21. 21.
    Fischer, W., Wictorin, K., Bjorklund, A., Williams, L.R., Varon, S. and Gage, F.H. (1987) Amelioration of cholinergic neuron atrophy and spatial memory impairment in aged rats by nerve growth factor. Nature 329: 65–68.CrossRefGoogle Scholar
  22. 22.
    Hefti, F. (1986) Nerve growth factor (NGF) promotes survival of septal cholinergic neurons after fimbrial transection. J. Neurosci. 8: 2155–2162.Google Scholar
  23. 23.
    Kromer, L.F. (1987) Nerve growth factor treatment after brain injury prevents neuronal death. Science 235: 214–216.CrossRefGoogle Scholar
  24. 24.
    Freese, A., Sabel, BA., Saltzman, W.M., During, M.J. and Langer, R. (1989) Controlled release of dopamine from a polymeric brain implant: In vitro characterization. Exp. Neurol. 103: 234–238.CrossRefGoogle Scholar
  25. 25.
    Dunnett, S.B., Bjorklund, A., Gage, F.H. and Stenevi, U. (1985) Transplantation of mesencephalic dopamine neurons to the striatum of adult rat. In: Neural grafting in the mammalian CNS (eds. Bjorklund, A. and Stenevi, U.) Elsevier, Amsterdam, pp. 451469.Google Scholar
  26. 26.
    Becker, J.B. and Freed, W.J. (1988) Adrenal medulla grafts enhance functional activity of the striatal dopamine system following substantia nigra lesions. Brain Res. 462: 401–406.CrossRefGoogle Scholar
  27. 27.
    Allen, G.S., Burns, R.S., Tulipan, N.B. and Parker, R.A. (1989) Adrenal medullary transplantation to the caudate nucleus in Parkinson’s disease: Initial clinical results in 18 patients. Arch. Neurol. 46: 487–491.CrossRefGoogle Scholar
  28. 28.
    Gage, F.H., Wolff, J.A., Rosenberg, M.B., Xu, L., Yee, J.-K., Shults, C. and Friedmann, T. (1987) Grafting genetically modified cells to the brain: Possibilities for the future. Neuroscience 23: 795–807.CrossRefGoogle Scholar
  29. 29.
    Rosenberg, M.B., Friedmann, T., Robertson, R.C., Tuszynski, M., Wolff, J.A., Breakefield, X.O. and Gage, F.H. (1988) Grafting genetically modified cells to the damaged brain: Restorative effects of NGF expression. Science 242: 1575–1578.CrossRefGoogle Scholar
  30. 30.
    Diatz, H.M. and Powell, T.P.S. (1954) Studies on the connexions of the fornix system. J. Neurol. Neurosurgery Psychiatry 17: 75–82.CrossRefGoogle Scholar
  31. 31.
    Gage, F.H., Wictorin, K., Fischer, W., Williams, L.R., Varon, S. and Bjorklund, A. (1986) Retrograde cell changes in medial septum and diagonal band following fimbriafomix transection: Quantitative temporal analysis. Neuroscience 19: 241–255.CrossRefGoogle Scholar
  32. 32.
    Korsching, S. and Thoenen, H. (1983) Nerve growth factor in sympathetic ganglia and corresponding target organs of the rat: Correlation with density of sympathetic innervation. Proc. Natl. Acad. Sci. USA 80: 3513–3516.CrossRefGoogle Scholar
  33. 33.
    Whittemore, S.R., Ebendal, T., Larkfors, L., Olson, L., Seiger, A., Stromberg, I. and Persson, H. (1986) Developmental and regional expression of B-nerve growth factor messenger RNA and protein in the rat central nervous system. Proc. Natl. Acad. Sci. USA 83: 817–821.CrossRefGoogle Scholar
  34. 34.
    Shelton, D.L. and Reichardt, L.F. (1986) Studies on the expression of the ß-nerve growth factor (NGF) gene in the central nervous system: Level and regional distribution of NGF mRNA suggest that NGF functions as trophic factor for several distinct populations of neurons. Proc. Natl. Acad. Sci. USA 83: 2714–2718.CrossRefGoogle Scholar
  35. 35..
    Seilor, M. and Schwab, M.E. (1984) Specific retrograde transport of nerve growth factor (NGF) from neocortex to nucleus basalis in the rat. Brain Res. 300: 33–39.CrossRefGoogle Scholar
  36. 36.
    Gnahn, H., Hefti, F., Heumann, R., Schwab, M.E. and Thoenen, H. (1983) NGFmediated increase in choline acetyltransferase (ChAT) in the neonatal rat forebrain: Evidence for a physiological role of NGF in the brain? Dev. Brain Res. 9: 45–52.CrossRefGoogle Scholar
  37. 37.
    Gage, F.H., Armstrong, D.M., Williams, L.R. and Varon, S. (1988) Morphological response of axotomized septal neurons to nerve growth factor. J. Comp. Neurol. 269: 147–155.CrossRefGoogle Scholar
  38. 38.
    Varmus, H. and Swanstrom, L. (1982) Replication of retroviruses. In: RNA Tumor Viruses (eds. Weiss, R., Teich, N., Varmus, H. and Coffin, J.) Cold Spring Harbor Press, Cold Spring Harbor, New York, pp. 233–249.Google Scholar
  39. 39.
    Scott, J., Selby, M., Urdea, M., Quiroga, M., Bell, G.I. and Rutter, W.J. (1983) Isolation and nucleotide sequence of a cDNA encoding the precursor of mouse nerve growth factor. Nature 302: 538–540.CrossRefGoogle Scholar
  40. 40.
    Ullrich, A., Gray, A., Berman, C. and Dull, T.J. (1983) Human beta nerve growth factor gene sequence highly homologous to that of mouse. Nature 303: 821–825.CrossRefGoogle Scholar
  41. 41.
    Edwards, R.H., Selby, M.J. and Rutter, W.J. (1986) Differential RNA splicing predicts two distinct nerve growth factor precursors. Nature 319: 784–787.CrossRefGoogle Scholar
  42. 42.
    Southern, P.J. and Berg,P. (1982) Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter. J. Mol. Appl. Genet. 1: 327–341.Google Scholar
  43. 43.
    Mishra, N.K. and Ryan, W.L. (1973) Effect of 3-methylcholanthrene and dimethylnitrosamine on anchorage dependence of rat fibroblasts chronically infected with Rauscher leukemiavirus. Int. J. Cancer 11: 123–130.CrossRefGoogle Scholar
  44. 44.
    Greene, L.A. and Tischler, A.S. (1976) Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc. Natl. Acad. Sci. USA 73: 2424–2428.CrossRefGoogle Scholar
  45. 45.
    Greene, L.A. (1977) A quantitative bioassay for nerve growth factor (NGF) activity employing a clonal pheochromocytoma cell line. Brain Res. 133: 350–353.CrossRefGoogle Scholar
  46. 46.
    Anderson, K.J., Dam, D., Lee, S. and Cotman, C.W. (1988) Basic fibroblast growth factor prevents death of lesioned cholinergic neurons in vivo. Nature 332: 360–361.CrossRefGoogle Scholar
  47. 47.
    Wolff, J.A., Xu, L., Friedmann, T., Rosenberg, M.B., Iuvone, M.P., O’Malley, K.L., Fisher, L.J., Shimohama, S. and Gage, F.H. (1988) Grafting of genetically engineered fibroblasts which produce L-DOPA in a rat model of Parkinson’s. Soc. Neurosci. Abs. 14: 734.Google Scholar
  48. 48.
    Hoogerbrugge, P.M., Suzuki, K., Poorthuis, B.J.H.M., Kobayashi, T., Wagemaker, G. and van Bekkum, D.W. (1988) Donor-derived cells in the central nervous system of twitcher mice after bone marrow transplantation. Science 239: 1035–1038.CrossRefGoogle Scholar
  49. 49.
    Wolf, D., Richter-Landsberg, C., Short, M.P., Cepko, C. and Breakefield, X.O. (1988) Retrovirus-mediated gene transfer of beta-nerve growth factor into mouse pituitary line AtT-20. Mol. Biol. Med. 5: 43–59.Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Michael B. Rosenberg
    • 1
  • Mark H. Tuszynski
    • 2
  • Kazunari Yoshida
    • 2
  • Theodore Friedmann
    • 1
  • Fred H. Gage
    • 2
  1. 1.Department of PediatricsUniversity of California at San DiegoLa JollaUSA
  2. 2.Department of NeurosciencesUniversity of California at San DiegoLa JollaUSA

Personalised recommendations