Advertisement

Muscarinic and Nicotinic Receptors in Alzheimer’s Disease: Rationale for Cholinergic Drug Treatment

  • Paul A. Lapchak
  • Dalia M. Araujo
  • Remi Quirion
Part of the Advances in Behavioral Biology book series (ABBI, volume 36)

Abstract

Alzheimer’s disease (AD) is characterized by an exten­sive degeneration of the cholinergic system in the human nucleus basalis of Meynert, neocortex and hippocampus (1–5), mainly based upon measures of choline acetyltransferase act­ivity (ChAT). Cholinergic receptor populations (muscarinic and nicotinic) have also been studied in Alzheimer’s disease; however the results of studies concerning muscarinic recep­tors are variable and inconsistent (1, 6–8). The variability may be due to the non-selective nature of the ligands used to measure muscarinic receptor populations. Alternatively, the discrepancy may be explained by the existence of multiple subtypes of muscarinic receptors in the CNS (see 5). Muscarinic receptors can be subdivided into a number of subtypes (M1–M3) which may be selectively labeled using 3H-pirenzepine (M1), 3H-ACh or 3H-AF-DX 116 (M2), or 3H-4DAMP (M3) (5, 9–12) In contrast to muscarinic receptors, results concerning the fate of neuronal nicotinic receptor populations in AD cortex are more consistent. These studies indicate that the density of nicotinic receptors, at least in cortical structures, is severely reduced in AD (3,5,13,14). It is essential to de­termine whether specific cholinergic receptor populations are affected in various regions of the AD brain in order to develop a strategy for the treatment of AD.

Keywords

Frontal Cortex Muscarinic Receptor Nicotinic Receptor Acetylcholine Release ChAT Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hardy, J., Adolfsson, R., Alafuzoff, I., Bucht, G., Marcusson, J., Nyberg, P., Perdahl, E., Wester, P. and Winblad, B. (1985) Transmitter deficits in Alzheimer’s disease. Neurochem. Int. 7: 545–563.Google Scholar
  2. 2.
    Candy, J.M., Perry, E.K., Perry, R.H., Court, J.A., Oakley, A.E. and Edwardson, J.A. (1986) The current status of the cortical cholinergic system in Alzheimer’s disease and Parkinson’s disease. Prog. Brain Res. 70: 105–132.Google Scholar
  3. 3.
    Quirion, R., Martel, J.C., Robitaille, Y., Etienne, P., Wood, P., Nair, N.P.V. and Gauthier, S. (1986) Neurotransmitter and receptor deficits in senile dementia of the Alzheimer type. Can. J. Neurol. Sci. 13: 503–510. 4.Plotkin, D.A. and Jarvik, L.F. (1986) Cholinergic dysfunction in Alzheimer’s disease: cause or effect. Prog Brain Res. 65: 91–103.Google Scholar
  4. 5.
    Araujo, D.M., Lapchak, P.A., Robitaille, Y., Gauthier, S. and Quirion, R. (1988) Differential alteration of various cholinergic markers in cortical and subcortical regions of human brain in Alzheimer’s disease. J. Neuro-chem. 50: 1914–1923.Google Scholar
  5. 6.
    Mash, D.C., Flynn, D.D. and Potter, L.T. (1985) Loss of M2 muscarine receptors in the cerebral cortex in Alzheimer’s disease and experimental cholinergic denervation. Science 228: 1115–1117.CrossRefGoogle Scholar
  6. 7.
    Reinikinainen, K.J., Riekkinen, P.J., Halonoe, T. and Laakso, M. (1987) Decreased muscarinic receptor binding in cerebral cortex and hippocampus in Alzheimer’s disease. Life Sci. 41: 453–461.CrossRefGoogle Scholar
  7. 8.
    Bowen, D.M., Allen, S.J., Benton, J.S., Goodhart, M.J., Haan, E.A., Palmer, A.M., Sims, N.R., Smith, C.C.T., Spillane, J.A., Esiri, M.M., Nearym D., Snowdon, J.S., Wilcock, G.K. and Davison, A.N. (1983) Biochemical assessment of serotonergic and cholinergic dysfunction and cerebral atrophy in Alzheimer’s disease. J Neuro-chem. 41: 266–272.Google Scholar
  8. 9.
    Lapchak, P.A., Araujo, D.M., Quirion, R. and Collier, B. (1989) Effect of chronic nicotine treatment on nicotinic autoreceptor function and N-[3H]methylcarbamyl-choline binding sites in the rat brain. J. Neurochem. 52: 483–491.CrossRefGoogle Scholar
  9. 9.
    Lapchak, P.A., Araujo, D.M., Quirion, R. and Collier, B. (1989) Effect of chronic nicotine treatment on nicotinic autoreceptor function and N-[3H]methylcarbamyl-choline binding sites in the rat brain. J. Neurochem. 52: 483–491.CrossRefGoogle Scholar
  10. 9.
    Lapchak, P.A., Araujo, D.M., Quirion, R. and Collier, B. (1989) Effect of chronic nicotine treatment on nicotinic autoreceptor function and N-[3H]methylcarbamyl-choline binding sites in the rat brain. J. Neurochem. 52: 483–491.CrossRefGoogle Scholar
  11. 9.
    Lapchak, P.A., Araujo, D.M., Quirion, R. and Collier, B. (1989) Effect of chronic nicotine treatment on nicotinic autoreceptor function and N-[3H]methylcarbamyl-choline binding sites in the rat brain. J. Neurochem. 52: 483–491.CrossRefGoogle Scholar
  12. 13.
    Flynn, D.D. and Mash, D.C. (1986) Characterization of L[3H]nicotine binding in human cerebral cortex: comparison between Alzheimer’s disease and the normal. J.Neurochem. 47: 1948–1954.CrossRefGoogle Scholar
  13. 14.
    Whitehouse, P.J., Martino, A.M., Antuono, P.G., Lowenstein, P.R., Coyle, J.T., Price, D.L. and Kellar, K.J. (1986) Nicotinic acetylcholine binding sites in Alzheimer’s disease. Brain Res. 371: 146–151.CrossRefGoogle Scholar
  14. 15.
    Abood, L.G. and Grassi, S. (1986) [3H]Methylcarbamylcholine, a new radioligand for studying brain nicotinic receptors. Biochem. Pharmacol. 35: 41994202.Google Scholar
  15. 16.
    Boksa, P. and Quirion, R. (1987) [3H]N-Methylcarbamylcholine, a new radioligand specific for nicotinic acetylcholine receptors in brain. Eur. J. Pharmacol. 139: 323–333.Google Scholar
  16. 17.
    Araujo, D.M., Lapchak, P.A., Collier, B. and Quirion, R. (1988) Characterization of N-[3H]Methylcarbamylcholine binding sites and effect of N-Methylcarbamylcholine on acetylcholine release in rat brain. J. Neurochem. 51: 292–299.CrossRefGoogle Scholar
  17. 18.
    Rowell, P.P. and Winkler, D.L. (1984) Nicotinic stimulation of [3H]acetylcholine release from mouse cerebral cortical synaptosomes. J. Neurochem. 43: 1593–1598.CrossRefGoogle Scholar
  18. 19.
    Raiteri, M., Leardi, R. and Marchi, M. (1984) Heterogeneity of presynaptic muscarinic receptors regulating neurotransmitter release in the rat brain. J. Pharmacol. Exp. Ther. 228: 209–214.Google Scholar
  19. 20.
    Pohorecki, R., Head, R. and Domino, E.F. (1988) Effects of selected muscarinic cholinergic antagonists of [3H]acetylcholine release from rat hippocampal slices. J. Pharmacol. Exp. Ther. 244: 213–217.Google Scholar
  20. 21.
    Hadhazy, P. and Szerb, J.C. (1977) The effect of cholinergic drugs on [3H]acetylcholine release from slices of rat hippocampus, striatum and cortex. Brain Res. 123: 311–322.CrossRefGoogle Scholar
  21. 22.
    Szerb, J.C., Hadhazy, P. and Dudar, J.D. (1977) Release of [3H]acetylcholine from rat hippocampal slices: effect of septal lesion and graded concentrations of muscarinic agonists and antagonists. Brain Res. 128: 285–291.CrossRefGoogle Scholar
  22. 23.
    Marchi, M. and Raiteri, M. (1985) On the presence in the cerebral cortex of muscarinic receptor subtypes which differ in neuronal localization, function and pharmacological properties. J. Pharmacol. Exp. Ther. 235: 230–233.Google Scholar
  23. 24.
    Wang, J.X., Roeske, W.R., Gulya, K., Wang, W. and Yamamura, H.I. (1987) [3H]AF-DX 116 labels subsets of muscarinic cholinergic receptors in rat brain and heart. Life Sci. 41: 1751–1760.Google Scholar
  24. 25.
    Wang, J.X., Roeske, W.R., Wang, W. and Yamamura, H.I. (1988) Himbacine recognizes a high affinity subtype of M2 muscarinic cholinergic receptor in the rat cerebral cortex. Brain Res. 446: 155–158.CrossRefGoogle Scholar
  25. 26.
    Hammer, R., Giraldo, E., Schiavi, G.B., Monferini, E. and Ladinsky, H. (1986) Binding profiles of a novel cardioselective muscarine antagonist, AF-DX 116, to membranes of peripheral tissues and brain in the rat. Life Sci. 38: 1653–1662.CrossRefGoogle Scholar
  26. 27.
    Warburton, D.M., Wesnes, K., Shergold, K. and James, M. (1986) Facilitation of learning and state dependency with nicotine. Psychopharmacology 89: 55–59.CrossRefGoogle Scholar
  27. 28.
    Wesnes, K. and Warburton, D.M. (1983) Smoking, nicotine, and human performance. Pharmacol. Ther. 21: 189–208.Google Scholar
  28. 29.
    Wesnes, K. and Revell, A. (1984) The separate and combined effects of scopolamine and nicotine on human information processing. Psychopharmacology 84: 5–11.CrossRefGoogle Scholar
  29. 30.
    Goldberg, S.R. and Henningfield, J.E. (1988) Reinforcing effects of nicotine in humans and experimental animals responding under intermittent schedules of iv drug injection. Ph maracoloov Biochemistry and Behavior 30: 227–234.CrossRefGoogle Scholar
  30. 31.
    Revell, A.D. (1988) Smoking and performance: a puff-bypuff analysis. Psychopharmacology 96: 563–565.CrossRefGoogle Scholar
  31. 32.
    Sunderland, T., Tariot, P.N. and Newhouse, P.A. (1988) Differential responsivity of mood, behavior, and cognition to cholinergic agents in elderly neuropsychiatric populations. Brain Res. Rev. 13: 371389Google Scholar
  32. 33.
    Newhouse, P.A., Sunderland, T., Tariot, P.N., Blumhardt, C.L., Weingartner, H., Mellow, A. and Murphy, D.L. (1988) Intravenous nicotine in Alzheimer’s disease: pilot study. Psychopharmacology 95: 171–175.CrossRefGoogle Scholar
  33. 34.
    Benwell, M.E.M., Balfour, D.J.K. and Anderson, J.M. (1988) Evidence that tobacco smoking increases the density of (-)-[3H]nicotine binding sites in human brain. J. Neurochem. 50: 1243–1247.CrossRefGoogle Scholar
  34. 35.
    Whitehouse, P.J. (1988) Intraventricular bethanechol in Alzheimer’s disease. Neurology 38: 307–308.CrossRefGoogle Scholar
  35. 36.
    Tariot, P.N., Cohen, R.M., Welkowitz, J.A., Sunderland, T., Newhouse, P.A., Murphy, D.L. and Weingartner, H. (1988) Multiple dose arecoline infusions on Alzheimer’s disease. Arch. Gen.psychiatry 45: 901–905.Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Paul A. Lapchak
    • 1
    • 2
  • Dalia M. Araujo
    • 1
    • 2
  • Remi Quirion
    • 1
    • 2
  1. 1.Neuroanatomy LabMontreal Neurological Inst.MontrealCanada
  2. 2.Douglas Hospital Res. Ctr.VerdunCanada

Personalised recommendations