Advertisement

A Model System Demonstrating Parallels in Animal and Human Aging: Extension to Alzheimer’s Disease

  • Diana S. Woodruff-Pak
  • Richard G. Finkbiner
  • Ira R. Katz
Part of the Advances in Behavioral Biology book series (ABBI, volume 36)

Abstract

The model system, classical conditioning of the eyeblink response in rabbits and humans, has a number of advantages for research on the neurobiology of learning and memory in normal aging. This model system may also have application to the study of senile dementia of the Alzheimer’s type (SDAT). Useful features of this model system for the study of learning and memory and its neurobiological substrates have been elaborated by Gormezano (1966) and Thompson et al. (1976). Woodruff-Pak and Thompson (1985) have highlighted the potential of this model system for research on the neurobiology of learning, memory, and aging. Among the advantages of classical conditioning of the eyeblink response in rabbits and humans are that:
  1. 1.

    Dramatic parallels in acquisition of this simple form of learning exist between humans and rabbits.

     
  2. 2.

    The neural circuitry underlying classical conditioning of the eyeblink response has been almost completely identified. The essential site of the plasticity for learning resides in the ipsilateral cerebellum, and the hippocampus plays a modulatory role.

     
  3. 3.

    Large age differences in the rate and level of acquisition exist in both humans and rabbits.

     

Keywords

Conditioned Stimulus Purkinje Cell Unconditioned Stimulus Classical Conditioning Nictitate Membrane Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berger, T. W. (1984). Long-term potentiation of hippocampal synaptic transmission affects rate of behavioral learning. Science, 224, 627–630.CrossRefGoogle Scholar
  2. Berger, T. W., Alger, B. E., & Thompson, R. F. (1976). Neuronal substrate of classical conditioning in the hippocampus. Science, 192, 483–485.CrossRefGoogle Scholar
  3. Berger, T. W., Berry, S. D., & Thompson, R. F. (1986). Role of the hippocampus in classical conditioning of aversive and appetitive behaviors. In R. L. Isaacson & K. H. Pribram (Eds.), The hippocampus, (Vol. IV, pp. 203–239 ). New York: Plenum.CrossRefGoogle Scholar
  4. Berger, T. W., Clark, G. A., & Thompson, R. F. (1980). Learning-dependent neuronal responses recorded from limbic system brain structures during classical conditioning. Physiological Psychology, 8, 155–167.Google Scholar
  5. Berger, T. W., Rinaldi, P., Weisz, D. J., & Thompson, R. F. (1983). Single unit analysis of different hippocampal cell types during classical conditioning of the rabbit nictitating membrane response. Journal of Neurophysiology, 59, 1197–1219.Google Scholar
  6. Berger, T. W. & Thompson, R. F. (1978a). Neuronal plasticity in the limbic system during classical conditioning of the rabbit nictitating membrane response. I. The hippocampus. Brain Research, 145, 323–346.CrossRefGoogle Scholar
  7. Berger, T. W. & Thompson, R. F. (1978b). Identification of pyramidal cells as the critical elements in hippocampal neuronal plasticity during learning. Proceedings of the National Academy of Science, 75, 1572–1576.CrossRefGoogle Scholar
  8. Berry, S. D. & Thompson, R. F. (1978). Prediction of learning rate from the hippocampal EEG. Science, 200, 1298–1300.CrossRefGoogle Scholar
  9. Berry, S. D. & Thompson, R. F. (1979). Medial septal lesions retard classical conditioning of the nictitating membrane response in rabbits. Science, 205, 209–211.Google Scholar
  10. Bird, T. D., Sumi, S. M., Nemens, E. J., Nochlin, D., Schellenberg, G., Lampe, T. H., Sadovnick, A., Chui, H., Miner, G. W., & Tinklenberg, J. (1989). Phenotypic heterogeneity in familial Alzheimer’s disease: A study of 24 kindreds. Annals of Neurology, 25, 12–25.CrossRefGoogle Scholar
  11. Braun, H. W., & Geiselhart, R. (1959). Age differences in the acquisition and extinction of the conditioned eyelid response. Journal of Experimental Psychology, 57, 386–388.CrossRefGoogle Scholar
  12. Coyle, J. T., Price, D. L., & DeLong, M. R. (1983). Alzheimer’s disease: A disorder of cortical cholinergic innervation. Science, 219, 1184–1190.CrossRefGoogle Scholar
  13. Deyo, R. A., Straube, K. T., & Disterhoft, J. F. (1989). Nimodipine facilitates associative learning in aging rabbits. Science, 243, 809–811.CrossRefGoogle Scholar
  14. Gendreau, P., & Suboski, M. D. (1971). Intelligence and age in discrimination conditioning of the eyelid response. Journal of Experimental Psychology, 89, 379–382.CrossRefGoogle Scholar
  15. Gormezano, I. (1966). Classical conditioning. In J. B. Sidowski (Ed.), Experimental methods and instrumentation in psychology (pp. 385–420 ). New York: McGraw-Hill.Google Scholar
  16. Gormezano, I. & Kehoe, E. J. (1975). Classical conditioning: Some methodological-conceptal issues. In W. K. Estes (Ed.), Handbook of learning and cognitive processes. Vol. 2. Conditioning and behavior theory (pp. 143–179 ). New Jersey: Lawrence Erlbaum Associates.Google Scholar
  17. Gormezano, I., Kehoe, E. J., & Marshall, B. S. (1983). Twenty years of classical conditioning research with the rabbit. In J. M. Sprague & A. N. Epstein (Eds.), Progress in psychobiology and physiological psychology. Vol. 10 (pp. 197–275 ). New York: Academic Press.Google Scholar
  18. Graves, C. A. & Solomon, P. R. (1985). Age related disruption of trace but not delay classical conditioning of the rabbit’s nictitating membrane response. Behavioral Neuroscience, 99, 88–96.CrossRefGoogle Scholar
  19. Hall, T. C., Miller, K. H., & Corsellis, J. A. N. (1975). Variations in the human Purkinje cell population according to age and sex. Neuropathology and Applied Neurobiology, 1, 267–292.CrossRefGoogle Scholar
  20. Hyman, B., Van Hoesen, G. W., Damasio, A., & Barnes, C. (1984). Alzheimer’s disease: Cell specific pathology isolates the hippocampal formation. Science, 225, 1168–1170.CrossRefGoogle Scholar
  21. Jerome, E. A. (1959). Age and learning -Experimental studies. In J. E. Birren (Ed.), Handbook of aging and the individual (pp. 655–699 ). Chicago: University of Chicago Press.Google Scholar
  22. Kimble, G. A. (1961). Pavlovian conference on higher nervous activity: Discussion: Part IV. New York Academy of Sciences, 92, 1189–1192.Google Scholar
  23. Kimble, G. A., & Pennypacker, H. S. (1963). Eyelid conditioning in young and aged subjects. Journal of Genetic Psychology, 103, 283–289.Google Scholar
  24. Lye, R. H., O’Boyle, D. J., Ramsden, R. T., & Schady, W. (1988). Effects of a unilateral cerebellar lesion on the acquisition of eye-blink conditioning in man. Journal of Physiology (London), 403, 58 P.Google Scholar
  25. McCormick, D. A., Lavond, D. G., & Thompson, R. F. (1982). Concomitant classical conditioning of the rabbit nictitating membrane and eyelid responses: Correlations and implications. Physiology and Behavior, 28, 769–775.CrossRefGoogle Scholar
  26. McCormick, D. A., & Thompson, R. F. (1984a). Cerebellum: Essential involvement in the classically conditioned eyelid response. Science, 223, 296–299.CrossRefGoogle Scholar
  27. McCormick, D. S. & Thompson, R. F. (1984b). Neuronal responses of the rabbit cerebellum during acquisition and performance of a classically conditioned nictitating membrane/eyelid response. Journal of Neuroscience, 4, 2811–2822.Google Scholar
  28. McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., & Stadlan, E. M. (1984). Clinical diagnosis of Alzheimer’s disease: Report of the NINCDSADRDA work group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s disease. Neurology, M, 939–944.Google Scholar
  29. Moore, J. W., Goodell, N. A., & Solomon, P. R. (1976). Central cholinergic blockage by scopolamine and habituaation, classical conditioning, and latent inhibition of the rabbit’s nictitating membrane response. Physiological Psychology, 4, 395–399.Google Scholar
  30. Moore, J. W. & Gormezano, I. (1977). Classical conditioning. In M. H. Marx & M. Bunch (Eds.), Fundamentals and applications of learning (pp. 87–120 ). New York: Macmillan.Google Scholar
  31. Patterson, M. M. & Romano, A. R. (1987). The rabbit in Pavlovian conditioning. In I. Gormezano, W. F. Prokasy, & R. F. Thompson (Eds.), Classical conditioning ( 3rd ed., pp. 1–36 ). New Jersey: Lawrence Erlbaum Associates.Google Scholar
  32. Powell, D. A., Buchanan, S. L., & Hernandez, L. L. (1981). Age related changes in classical (Pavlovian) conditioning in the New Zealand albino rabbit. Experimental Aging Research, 7, 453–465.CrossRefGoogle Scholar
  33. Schmaltz, L. W. & Theios, J. (1972). Acquisition and extinction of a classically conditioned response in hippocampectomized rabbits (Oryctolagus cuniculus). Journal of Comparative and Physiological Psychology, 79, 328–333.CrossRefGoogle Scholar
  34. Sitiram, N., Weingartner, H., & Gillin, J. C. (1978). Human serial learning: Enhancement with arecoline and choline, and impairment with scopolamine. Science, 201, 274–276.CrossRefGoogle Scholar
  35. Solomon, P. R. & Gottfried, K. E. (1981). The spetohippocampal cholinergic system and classical conditioning of the rabbit’s nictitating membrane response. Journal of Comparative and Physiological Psychology, 95, 322–330.CrossRefGoogle Scholar
  36. Solomon, P. R. & Moore, J. W. (1975). Latent inhibition and stimulus generalization of the classically conditioned nictitating membrane response in rabbits (Oryctolagus cuniculus) following dorsal hippocampal ablations. Journal of Comparative and Physiological Psychology, 89, 1192–1203.CrossRefGoogle Scholar
  37. Solomon, P. R. & Moore, J. W. (1975). Latent inhibition and stimulus generalization of the classically conditioned nictitating membrane response in rabbits (Oryctolagus cuniculus) following dorsal hippocampal ablations. Journal of Comparative and Physiological Psychology, 89, 1192–1203.CrossRefGoogle Scholar
  38. Solomon, P. R., Pomerleau, D., Bennett, L., James, J., & Morse, D. L. (1989). Acquisition of the classically conditioned eyeblink response in humans over the life span. Psychology and Aging, 4, 34–41.CrossRefGoogle Scholar
  39. Solomon, P. R., Solomon, S. D., Vander Schaaf, E., & Perry, H. E. (1983). Altered activity in the hippocampus is more detrimental to classical conditioning than removing the structure. Science, 220, 329–331.CrossRefGoogle Scholar
  40. Solyom, L., & Barik, H. C. (1965). Conditioning in senescence and senility. Journal of Gerontology, 20, 483–488.Google Scholar
  41. Thompson, R. F. (1986). The neurobiology of learning and memory. Science, 233, 941–947.CrossRefGoogle Scholar
  42. Thompson, R. F., Berger, T. W., Berry, S. D., Hoehler, F. K., Kettner, R. E., & Weisz, D. J. (1980). Hippocampal substrate of classical conditioning. Physiological Psychology, 8, 262–279.Google Scholar
  43. Thompson, R. F., Berger, T. W., Cegayske, C. F., Patterson, M. M., Roemer, R. A., Teyler, T. J., & Young, R. A. (1976). A search for the engram. American Psychologist, 31, 209–227.CrossRefGoogle Scholar
  44. Thompson, R. F., McCormick, D. A., & Lavond, D. G. (1986). Localization of the essential memory trace system for a basic form of associative learning in the mammalian brain. In S. Hulse (Ed.), One hundred years of psychological research in America (pp. 125–171 ). Baltimore: Johns Hopkins University Press.Google Scholar
  45. Thompson, R. F., & Woodruff-Pak, D. S. (1987). A model system approach to age and the neuronal bases of learning and memory. In M. W. Riley, J. D. Matarazzo, & A. Baum (Eds.), The aging dimension. (pp. 49–76 ). Hillsdale, NJ: Erlbaum.Google Scholar
  46. Woodruff-Pak, D. S. (1988). Aging and classical conditioning: Parallel studies in rabbits and humans. Neurobiology of Aging, 9, 511–522.CrossRefGoogle Scholar
  47. Woodruff-Pak, D. S., Lavond, D. G., Logan, C. G., & Thompson, R. F. (1987). Classical conditioning in 3-, 30-, and 45-month-old rabbits: Behavioral learning and hippocampal unit activity. Neurobiology of Aging, 8, 101–108.CrossRefGoogle Scholar
  48. Woodruff-Pak, D. S., Lavond, D. G., & Thompson, R. F. (1985). Trace conditioning: Abolished by cerebellar nuclear lesions but not lateral cerebellar cortex aspirations. Brain Research, 348, 249–260.CrossRefGoogle Scholar
  49. Woodruff-Pak, D. S. & Logan, C. G. (1988). No apparent age differences in hippocampal theta frequency in rabbits aged 3–50 months. Comprehensive Gerontology, 2, 24–28.Google Scholar
  50. Woodruff-Pak, D. S., & Sheffield, J. B. (1987). Age differences in Purkinje cells and rate of classical conditioning in young and older rabbits. Society for Neuroscience Abstracts, 13, 441.Google Scholar
  51. Woodruff-Pak, D. S., Steinmetz, J. E., & Thompson, R. F. (1988). Classical conditioning of rabbits 2–1/2 to 4 years old using mossy fiber stimulation as a CS. Neurobiology of Agin, 9, 187–193.CrossRefGoogle Scholar
  52. Woodruff-Pak, D. S., & Thompson, R. F. (1985). Classical conditioning of the eyelid response in rabbits as a model system for the study of brain mechanisms of learning and memory in aging. Experimental Aging Research, 11, 109–122.CrossRefGoogle Scholar
  53. Woodruff-Pak, D. S., & Thompson, R. F. (1988a). Cerebellar correlates of classical conditioning across the life span. In P. B. Baltes, R. M. Lerner, & D. M. Featherman (Eds.), Life-span development and behavior (Vol. 9 ) (pp. 1–37 ). Hillsdale, NJ: Erlbaum.Google Scholar
  54. Woodruff-Pak, D. S. & Thompson, R. F. (1988b). Classical conditioning of the eyeblink response in the delay paradigm in adults aged 18–83 years. Psychology and Aging, 3, 219–229.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Diana S. Woodruff-Pak
    • 1
    • 2
  • Richard G. Finkbiner
    • 1
    • 2
  • Ira R. Katz
    • 1
    • 2
  1. 1.Department of PsychologyTemple UniversityPhiladelphiaUSA
  2. 2.Philadelphia Geriatric CenterPhiladelphiaUSA

Personalised recommendations