EEG Power Spectra and Brain Function

  • Jyunji Yamamoto
Part of the Advances in Behavioral Biology book series (ABBI, volume 36)


Research on brain function is one of the most important themes for the neurobiology of aging. While brain function declines in relation to aging, the assessment of the extent of decline is often difficult. Various methods involving behavior, neurochemistry, electrophysiology, image analysis and others are commonly employed for the study of CNS activity, and each has its particular strengths and caveats. The electroencephlogram (EEG) is one method of electrophysiological analysis that has a long and especially useful history in both experimental and clinical studies. Especially useful is its ability to assess the activity of the whole brain, unlike some of the other techniques. However, while EEG’s can accurately measure changes in overall brain activity, they are often thought to reflect only simple changes in this activity, such as wakefulness or sleep.


Peak Power Locus Coeruleus Psychotropic Drug Slow Wave Sleep Wave Peak 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yamamoto, J. (1985) Characteristics of the cortical and hippocampal EEG power spectra of rabbits during normal behavioral states and after administration of CNS acting drugs. Japan. J. Pharmacol. 37: 227–234.Google Scholar
  2. 2.
    Yamamoto, J. (1988) Roles of cholinergic, dopaminergic, noradrenergic, serotonergic and GABAergic systems in changes of the EEG power spectra and behavioral states in rabbits. Japan. J. Pharmacol. 47: 123–134.Google Scholar
  3. 3.
    Sawyer, H.W„ Everret, J.W. and Green, J.D. (1954) The rabbit diencephalon in stereotaxic coordinates. J. Comp. Neurol. 101: 801–824.Google Scholar
  4. 4.
    Whitehouse, P.J., Price, D.L., Clark, A.W., Coyle, J.T. and DeLong, M.R. (1981) Alzheimer disease, evidence for selective loss of cholinergic neurons in the nucleus basalis. Ann. Neurol. 10: 122–126.CrossRefGoogle Scholar
  5. 5.
    Friedman, E., Lerer, BN. and Kuster, J. (1983) Loss of cholinergic neurons in the rat neocortex produces deficits in passive avoidance learning. Pharmacol. Biochem. Behay. 19: 309–312.Google Scholar
  6. 6.
    Ernst, A.M. (1967) Mode of action of apomorphine and dexampheamine on gnawing compulsion in rats. Psychopharmacologia 10: 316–326.CrossRefGoogle Scholar
  7. 7.
    Maj, J., Grabowska, M. and Gajda, L. (1972) Effect of apomorphine on motility in rats. Eur. J. Pharmacol. 17: 208214.Google Scholar
  8. 8.
    Corne, S.J. and Pickering, R.W. (1967) A possible corelation between drug-induced hallucination in man and a behavioral response in mice. Psychopharmacologia 11: 65–78.CrossRefGoogle Scholar
  9. 9.
    Boulton, C.S. and Handley, S.L. (1973) Factors modifying the head-twitch response to 5-hydroxytryptophan. Psychopharmacologia 31: 205–214.CrossRefGoogle Scholar
  10. 10.
    Tokizane, T (1965) Sleep mechanism, hypothalamic control of cortical activity. In: Aspects Anatomo Functionnels de la Physiologie du Sommeil, Coll Internat., C.N.R.S. No 127, pp. 151–185.Google Scholar
  11. 11.
    Jouvet, M. and Delorme, J. (1965) Locus coeruleus et sommmeil paradoxal. Compt. Rend. Soc. Biol. 159: 895–899.Google Scholar
  12. 12.
    Lindbrink, P. (1974) The effect of lesions of ascending noradrenaline pathways on sleep and waking in the rats. Brain Res. 74: 19–40.CrossRefGoogle Scholar
  13. 13.
    Jones, B.E., Harper, S.T. and Halaris, A.E. (1977) Effects of locus coeruleus lesions upon cerebral monoamine content, sleep-wakefulness states and the response to amphetamine in the cat. Brain Res. 124: 473–496.CrossRefGoogle Scholar
  14. 14.
    Fuxe, K., Lidbrink, P., Hokleft, T., P. and Goldstein, M. (1974) Effects of piperoxane on sleep waking in the rat. Evidence for increased waking by blocking inhibitory adrenaline receptorson the locus coeuleus. Acta Physiol. Scand. 91: 566–567.Google Scholar
  15. 15.
    Matsumoto, J. and Jouvet, M. (1963) Effects de reserpine, DOPA et 5-HTP sur les deux etats de sommeil. Compt. Rend. Soc. Biol. 158: 2135–2139.Google Scholar
  16. 16.
    Jouvet, M. (1969) Biogenic amines and the state of sleep. Science 163: 32–41.CrossRefGoogle Scholar
  17. 17.
    McGinty, D.J. and Harper, R.M. (1976) Dorsal raphe neurons, depression of firing during sleep in cats. Brain Res. 101: 569–575.CrossRefGoogle Scholar
  18. 18.
    Adrien, J. (1976) Lesion of the anterior raphe nuclei in the new kitten and the effects on sleep. Brain Res. 103: 579–583.CrossRefGoogle Scholar
  19. 19.
    Fornal, D. and Radulovacki, M. (1982) Methysergide blocks the sleep suppressant action of quipazine in rats. Psychopharmacology 76: 255–259.CrossRefGoogle Scholar
  20. 20.
    Wojcik, W.J., Fornai, C. and Radulovacki, M. (1980) Effect of tryptophan on sleep in the rat. Neuropharmacology 19: 163–167.CrossRefGoogle Scholar
  21. 21.
    Kafi, S. and Gaillard, J.M. (1976) Brain dopamine receptprs and sleep in the rat. Effects of stimulation and blockade. Eur. J. Pharmacol. 38: 357–363.CrossRefGoogle Scholar
  22. 22.
    Radulovacki, M., Wojcik, W.J. and Fornal, C. (1979) Effects of bromocriptine and fluphentixol on sleep in REM sleep derived rats. Life Sci. 24: 1705–1712.CrossRefGoogle Scholar
  23. 23.
    Sitaram, N., Mendelson, W.B. Wyatt, R.J. and Gillin, J.C. (1977) The time-dependent induction of REM sleep and arousal by physostigmine infusion during normal human sleep. Brain Res. 122: 562–567.CrossRefGoogle Scholar
  24. 24.
    Masserano, J.M. and King, C. (1982) Effects of sleep of acetylcholine perfusion of the locus coeruleus of cats. Neuropharmacology 69: 1163–1167.CrossRefGoogle Scholar
  25. 25.
    Myers, R.D. (1974) Behavioral, pharmacological and physiological aspects, sleep and arousal. In: Handbook of Drug and Chemical Stimulation of the Brain. Van Nostrand Renhold Company, New York, pp. 429–468.Google Scholar
  26. 26.
    Giuditta, A. (1977) The biochemistry of sleep. In: Biochemical Correlation of Brain Structure and Function(ed:Davison, A.N.), Academic Press, New York, pp. 293Google Scholar
  27. 27.
    Grossland, J. (1963) In: The Clinical Chemistry of Monoamines (eds: Varley, H. and Gowenlock, A.H.), Elsevier, Amsterdam.Google Scholar
  28. 28.
    Carlson, A. (1964) Biogenic amines. Prog. Brain Res. 8: 9CrossRefGoogle Scholar
  29. 29.
    Kareti, S., Moreton, L.E. and Khazan, N. (1980) Effects of buprenorphine, a new narcotic agonist-antagonist on the EEG, power spectrun and behavior of the rat. Neuropharmacology 21: 195–2012.CrossRefGoogle Scholar
  30. 30.
    Yamamoto, K., Sawada, T., Utsumi, S., Naito, T. and Koshida, H. (1982) Behavioral and electrophysiological analysis of the effects of 2-o-chlorobenzoyl-4-chloro-Nmethyl-N-glycylglycinanilide hydrate in the CNS in cats and monkeys. Neuropharmacology 21: 413–421.CrossRefGoogle Scholar
  31. 31.
    Ishikawa, T., Yamanouchi, K., Tanaka, Y., Yanagihashi, R. Nemoto, S. and Mochizuki, E. (1982) Electroencephalographical study on the central action of physostigmine and pentobarbital by quantitative analysis in freely moving rabbits. Folia Pharmacol. Japon. 79: 73 pGoogle Scholar
  32. 32.
    Sterman, M.B. and Kovalesky, R.A. (1983) Baseline studies and anticonvulsant drug effects on the sleep EEG power spectral profile. Electroencephalogr. Clin. Neurophysiol. 55: 212–222.Google Scholar
  33. 33.
    Iwata, N. and Mikuni, N. (1982) EEG change in the conscious rats during immobility induced by psychological stress. Psychopharmacology 71: 117–122.CrossRefGoogle Scholar
  34. 34.
    Ishikawa, T., Yamanouchi, K., Tanaka, Y., Maruyama, R. and Mochizuki, E. (1983) Study of central action of some psychotropic drugs on the quantitatively analyzed EEG. Japan. J. Pharpacol. 33: Supp. 68 p.Google Scholar
  35. 35.
    Sakai, Y. and Matsui, Y. (1980) Neurochemical and electroencephalographical studies on the central actions of mianserin. Folia Pharmacol. Japon. 76: 479–493.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Jyunji Yamamoto
    • 1
  1. 1.Section of Pharmacology Research LaboratoryTaiho Pharmaceutical Co LtdKawauchi-cho, TokushimaJapan

Personalised recommendations