Neuronotrophic Factors, Gangliosides and Their Interaction: Implications in the Regulation of Nervous System Plasticity

  • Stephen D. Skaper
  • Alberta Leon
  • Gino Toffano
Part of the Advances in Behavioral Biology book series (ABBI, volume 36)


The phenomenon of neuroplasticity can be discussed, in very broad terms, as the ability of a nerve cell to modify its behaviors under the influence of extrinsic factors. Like any living system, the nervous system represents a dynamic organization, whose various elements are in a continual state of change due to interactions not only with one another, but also with their extraneural environment. Neurons are exposed to such influences from cells with which they are in direct contact, and from humoral sources; this vast array of external influences constitutes the microenvironment of these cells. Agents affecting neuronal behaviors represent a diverse and crucial element in determining how nerve cells will respond to cues from this microenvironment. Our ability to alter the response(s) of neuronal cells to these extrinsic signals can constitute a powerful tool for modulating the neuroplastic behaviors of the former — an important consideration for promoting regeneration and/or repair processes in the brain. Such is the topic of the present article.


Nerve Growth Factor Cholinergic Neuron Basal Forebrain ChAT Activity Basal Forebrain Cholinergic Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Levi-Montalcini, R. (1966) Nerve growth factor: its mode of action on sensory and sympathetic neurons. Harvey Lect. 60: 217–219.Google Scholar
  2. 2.
    Levi-Montalcini, R. (1987) The Nerve Growth Factor thirty five years later. Science 237: 1154–1162.CrossRefGoogle Scholar
  3. 3.
    Gorin, P.D. and Johnson, E.M. (1979) Experimental autoimmune model of nerve growth factor deprivation: effects on developing peripheral sympathetic and sensory neurons. Proc. Natl. Acad. Sci. USA 76: 5383–5386.CrossRefGoogle Scholar
  4. 4.
    Levi-Montalcini, R. and Angeletti, P.U. (1966) Immunosympathectomy. Pharmacol. Rev. 18: 619–628.Google Scholar
  5. 5.
    Levi-Montalcini, R. and Hamburger, V. (1951) Selective growth stimulating effects of mouse sarcoma on the sensory and sympathetic nervous system of the chick embryo. J. Exp. Zool. 116: 321–362.CrossRefGoogle Scholar
  6. 6.
    Thoenen, H., Angeletti, P.U., Levi-Montalcini, R. and Kettler, R. (1971) Selective induction by nerve growth factor of tyrosine hydroxylase and dopamine-beta-hydroxylase in the rat superior ganglion. Proc. Natl. Acad. Sci. USA 68: 1598–1602.CrossRefGoogle Scholar
  7. 7.
    Hendry, I.A., Steockel, K., Thoenen, H. and Iversen, L.L. (1974) The retrograde axonal transport of nerve growth factor. Brain Res. 68: 103–121.CrossRefGoogle Scholar
  8. 8.
    Stoeckel, K., Schwab, M. and Thoenen, H. (1975) Specificity of retrograde transport of nerve growth factor (NGF) in sensory neurons: a biochemical and morphological study. Brain Res. 89: 1–14.CrossRefGoogle Scholar
  9. 9.
    Heumann, R., Korsching, S., Scott, J. and Thoenen, H. (1984) Relationship between levels of nerve growth factor (NGF) and its messenger RNA in sympathetic ganglia and peripheral target tissues. EMBO J. 3: 3183–3189.Google Scholar
  10. 10.
    Shelton, D.L. and Reichardt, L.F. (1984) Expression of the beta nerve growth factor gene correlates with the sympathetic innervation in effector organs. Proc. Natl. Acad. Sci. USA 81: 7951–7955.CrossRefGoogle Scholar
  11. 11.
    Seiler, M. and Schwab, M.E. (1984) Specific retrograde transport of nerve growth factor from neocortex to nucleus basalis in rat. Brain Res. 400: 33–39.CrossRefGoogle Scholar
  12. 12.
    Hefti, F., Hartikka, J., Eckenstein, F., Gnahn, H., Heumann, R. and Schwab, M. (1985) Nerve growth factor (NGF) increases choline acetyltransferase but not survival or fiber outgrowth of cultured fetal septal cholinergic neurons. Neuroscience 14: 55–68.CrossRefGoogle Scholar
  13. 13.
    Hartikka, J. and Hefti, F. (1988) Development of septal cholinergic neurons in culture: plating density and glial cells modulate effects of NGF on survival, fiber growth, and expression of transmitter-specific enzymes. J. Neurosci. 8: 2967–2985.Google Scholar
  14. 14.
    Gnahn, H., Hefti, F., Heumann, R., Schwab, M. and Thoenen, H. (1983) NGF-mediated increase of choline acetyltranferase (ChAT) in the neonatal forebrain: evidence for a physiological role of NGF in the brain? Dev. Brain Res. 9: 45–52.CrossRefGoogle Scholar
  15. 15.
    Mobley, W.C., Rutkowski, J.L., Tennekoon, G.I., Gemski, J., Buchanan, K. and Johnston, M.V. (1986) Nerve growth factor increases choline acetyltransferase activity in developing basal forebrain neurons. Molec. Brain Res. 1: 53–62.CrossRefGoogle Scholar
  16. 16.
    Auburger, G., Heumann, R., Hellweg, R., Korsching, S. and Thoenen, H. (1987) Developmental changes of nerve growth factor and its mRNA in the rat hippocampus: comparison with choline acetyltransferase. Dev. Biol. 120: 322–328.CrossRefGoogle Scholar
  17. 17.
    Whittemore, S.R., Ebendal, T., Lärkfors, L., Olson, L. and Seiger, A. (1986) Developmental and regional expression of beta nerve growth factor messenger RNA and protein in the rat central nervous system. Proc. Natl. Acad. Sci. USA 83: 817–821.CrossRefGoogle Scholar
  18. 18.
    Caviccioli, L., Flanigan, T.P., Vantini G., Fusco, M., Polato, P., Toffano, G., Walsh, F.S. and Leon A. (1989) NGF amplifies expression of NGF receptor messenger RNA in forebrain cholinergic neurons of rats. Eur. J. Neurosci., in press.Google Scholar
  19. 19.
    Vantini, G., Schiavo, N., Di Martino, A., Polato, P., Triban, C., Callegaro, L., Toffano, G. and Leon, A. (1989) Evidence for a physiological role of nerve growth factor in CNS of neonatal rats. Neuron, in press.Google Scholar
  20. 20.
    Shelton, D.L. and Reichardt, L.F. (1986) Studies on the expression of the beta nerve growth factor (NGF) gene in the central nervous system: level and regional distribution of NGF mRNA suggest that NGF functions as a trophic factor for several distinct populations of neurons. Proc. Natl. Acad. Sci. USA 83: 2714–2718.CrossRefGoogle Scholar
  21. 21.
    Yan, Q. and Johnson, E.M. Jr. (1988) An immunohistochemical study of nerve growth factor (NGF) receptor in developing rats. J. Neurosci. 8: 3481–3498.Google Scholar
  22. 22.
    Schatterman, G.C., Gibbs, L., Lanahan, A.A., Claude, P. and Bothwell, M. (1988) Expression of NGF receptor in the developing and adult primate central nervous system. J. Neurosci. 8: 860–873.Google Scholar
  23. 23.
    Hefti, F., Hartikka, J., Salvatierra, A., Wiener, W.J. and Mash, D.C. (1986) Localization of nerve factor receptors in cholinergic neurons of the human basal forebrain. Neurosci. Lett. 69: 37–41.CrossRefGoogle Scholar
  24. 24.
    Buck, C.R., Martinez, H.J., Chao, M.V. and Black, I.B. (1988) Differential expression of the nerve growth factor receptor gene in multiple brain areas. Dev. Brain Res. 44: 259–268.CrossRefGoogle Scholar
  25. 25.
    Goedert, M., Fine, A., Dawbarn, D., Wilcock, G.K. and Chao, M.V. (1989) Nerve growth factor receptor mRNA distribution in human brain: normal levels in basal forebrain in Alzheimer’s disease. Molec. Brain Res. 5: 1–7.CrossRefGoogle Scholar
  26. 26.
    Hefti F (1986) Nerve growth factor (NGF) promotes survival of septal cholinergic neurons after fimbrial transection. J. Neurosci. 6: 2155–2162.Google Scholar
  27. 27.
    Williams, L.R., Varon, S., Peterson, G.M., Wictorin, K., Fischer, W., Björklund, A. and Gage, F.H. (1986) Continuous infusion of nerve growth factor prevents basal forebrain neuronal death after fimbria fornix transection. Proc. Natl. Acad. Sci. USA 83: 9231–9235.CrossRefGoogle Scholar
  28. 28.
    Kromer, L.F. (1987) Nerve growth factor treatment after brain injury prevents neuronal death. Science 235: 214–216.CrossRefGoogle Scholar
  29. 29.
    Fusco, M., Oderfeld-Nowak, B., Vantini, G., Schiavo N., Gradkowska, M., Zaremba, M. and Leon, A. (1989) NGF effects uninjured, adult rat septohippocampal cholinergic neurons. Neuroscience, in press.Google Scholar
  30. 30.
    Carmignoto, G., Maffei, L., Candeo, P., Canella, R. and Comelli, C. (1989) Effects of NGF on the survival of rat retinal ganglion cells following optic nerve section. J. Neurosci., 9: 1263–1272.Google Scholar
  31. 31.
    Siliprandi, R., Canella, R., Zanoni, R. and Carmignoto, G. (1989) Retinal ganglion cell vulnerability after ischemia in the cat. Effects of NGF. Soc. Neurosci. Abstr. 15: in press.Google Scholar
  32. 32.
    Harbin, G., Manthorpe, M. and Varon, S. (1984) Purification of the chick eye ciliary neuronotrophic factor (CNTF). J. Neurochem. 43: 1468–1478.CrossRefGoogle Scholar
  33. 33.
    Manthorpe, M., Skaper, S.D., Williams, L.R. and Varon, S. (1986) Purification of adult rat sciatic nerve ciliary neuronotrophic factor. Brain Res. 367: 282–286.CrossRefGoogle Scholar
  34. 34.
    Watters, D.J. and Hendry, I.A. (1987) Purification of a ciliary neurotrophic factor from bovine heart. J. Neurochem. 49: 705–713.CrossRefGoogle Scholar
  35. 35.
    Barde, Y.-A., Edgar, D. and Thoenen, H. (1982) Purification of a new neurotrophic factor from brain. EMBO J. 1: 549–553.Google Scholar
  36. 36.
    Hatten, M.E., Lynch, M., Rydel, R.R., Sanchez, J., Joseph- Silverstein, J., Moscatelli, D. and Rifkin, D.B. (1988) In vitro neurite extension by granule neurons is dependent upon astroglial-derived fibroblast growth factor. Dev. Biol. 125: 280–289.CrossRefGoogle Scholar
  37. 37.
    Ferrari, G., Minozzi, C.-M., Toffano G., Leon, A. and Skaper, S.D. (1989) Basic fibroblast growth factor promotes the survival and development of mesencephalic neurons in culture. Dev. Biol. 133: 140–147.CrossRefGoogle Scholar
  38. 38.
    Walicke, P.A. (1988) Basic and acidic fibroblast growth factors have trophic effects on neurons from multiple CNS regions. J. Neurosci. 8: 2618–2627.Google Scholar
  39. 39.
    Walicke, P., Cowan, W.M., Ueno, N., Baird, A. and Guillemin, R. (1986) Fibroblast growth factor promotes survival of dissociated hippocampal neurons and enhances neurite extension. Proc. Natl. Acad. Sci. USA 83: 3012–3016.CrossRefGoogle Scholar
  40. 40.
    Unsicker, K., Reichert-Preibsch, H., Schmidt, R., Pettmann, B., Labourdette, G. and Sensenbrenner, M. (1987) Astroglial and fibroblast growth factors have neurotrophic functions for cultured peripheral and central nervous system neurons. Proc. Natl. Acad. Sci. USA 84: 5459–5463.CrossRefGoogle Scholar
  41. 41.
    Morrison, R.S., Kornblum, H.I., Leslie, F.M. and Bradshaw, R.A. (1987) Trophic stimulation of cultured neurons from neonatal rat brain by epidermal growth factor. Science 238: 72–75.CrossRefGoogle Scholar
  42. 42.
    Freed, W.J., Morihisa, J.M., Spoor, E., Hoffer, B.J., Olson, L., Seiger, A. and Wyatt, R.J. (1981) Transplanted adrenal chromaffin cells in rat brain reduce lesion induced rotational behavior. Nature 292: 351–352.CrossRefGoogle Scholar
  43. 43.
    Gage, F.H. and Björklund, A. (1986) Cholinergic septal grafts into the hippocampal formation improve spatial learning and memory in aged rats by an atropine-sensitive mechanism. J. Neurosci. 6: 2837–2847.Google Scholar
  44. 44.
    Appel, S.H. (1981) A unifying hypothesis for the cause of amyotrophic lateral sclerosis, parkinsonism, and Alzheimer’s disease. Ann. Neurol. 10: 599–605.CrossRefGoogle Scholar
  45. 45.
    Varon, S., Manthorpe, M., Davis, G.E., Williams, L.R., and Skaper, S.D. (1988) Growth factors. In: Functional Recovery in Neurological Disease (ed: Waxman, S.G.), vol. 47, Raven Press, New York, NY, pp. 493–521.Google Scholar
  46. 46.
    Hefti, F., and Weiner, W.J. (1986) Nerve growth factor and Alzheimer’s disease. Ann. Neurol. 20: 275–281.CrossRefGoogle Scholar
  47. 47.
    Rosenberg, M.B., Friedmann, T., Robertson, R.C., Tuszynski, M., Wolff, J.A., Breakefield, X.O. and Gage, F.H. (1988) Grafting genetically modified cells to the damaged brain: restorative effects of NGF expression. Science 242: 1575–1578.CrossRefGoogle Scholar
  48. 48.
    Svennerholm, L. (1984) Biological significance of gangliosides. In: Cellular and Pathological Aspects of Glycoconjugate Metabolism (eds: Dreyfus, H., Massarelli, R., Freysz, L. and Rebel, G.), vol. 126, INSERM, Paris, pp. 21–44.Google Scholar
  49. 49.
    Ledeen, R.W. (1983) Gangliosides. In: Handbook of Neurochemistry (ed: Lajtha, A.), vol. 3, Plenum Press, New York, NY, pp. 41–90.Google Scholar
  50. 50.
    Willinger, M. and Schachner, M. (1980) GM1 ganglioside as a marker for neuronal differentiation in mouse cerebellum. Dev. Biol. 74: 101–117.CrossRefGoogle Scholar
  51. 51.
    Ando, S., Tanaka, Y. and Kon, K. (1986) Membrane aging of the brain synaptosomes with special reference to gangliosides. In: Gangliosides and Neuronal Plasticity (eds: Tettamanti, G., Ledeen, R.W., Sandhoff, K., Nagai, Y. and Toffano, G.), Fidia Research Series, vol. 6, Liviana Press, Padova, pp. 105–112.Google Scholar
  52. 52.
    Purpura, D.P. and Suzuki, K. (1976) Distortion of neuronal geometry and formation of aberrant synapses in neuronal storage diseases. Brain Res. 116: 1–21.CrossRefGoogle Scholar
  53. 53.
    Spirman, N., Sela, B.A. and Schwartz, M. (1982) Anti-ganglioside antibodies inhibit neuritic outgrowth from regenerating goldfish retinal explants. J. Neurochem. 39: 847–877.CrossRefGoogle Scholar
  54. 54.
    Sparrow, J.R., McGuinness, C., Schwartz, M. and Grafstein, B. (1984) Antibodies to ganglioside inhibit goldfish optic nerve regeneration in vivo. J. Neurosci. Res. 12: 233–243.CrossRefGoogle Scholar
  55. 55.
    Kasarskis, E.J., Karpiak, S.E., Rapport, M.M., Yu, R.R. and Bass, N.H. (1981) Abnormal maturation of cerebral cortex and behavioral deficit in adult rats after neonatal administration of antibodies to ganglioside. Dev. Brain Res. 1: 25–35.CrossRefGoogle Scholar
  56. 56.
    Ferrari, G., Fabris, M. and Gorio, A. (1983) Gangliosides enhance neurite outgrowth in PC12 cells. Dev. Brain Res. 8: 215–221.CrossRefGoogle Scholar
  57. 57.
    Leon, A., Benvegnù, D., Dal Toso, R., Presti, D., Facci, L., Giorgi, O. and Toffano, G. (1984) Dorsal root ganglia and nerve growth factor: a model for understanding the mechanisms of GM1 effects on neuronal repair. J. Neurosci. Res. 12: 277–287.CrossRefGoogle Scholar
  58. 58.
    Roisen, F.J., Bartfeld, H., Nagele, R. and Yorke, G. (1981) Ganglioside stimulation of axonal sprouting in vitro. Science 214: 577–578.CrossRefGoogle Scholar
  59. 59.
    Skaper, S.D., Katoh-Semba, R. and Varon, S. (1985) GM1 ganglioside accelerates neurite outgrowth from primary peripheral and central neurons under selected culture conditions. Dev. Brain Res. 23: 19–26.CrossRefGoogle Scholar
  60. 60.
    Spoerri, P.E. and Roisen, F.J. (1988) Ganglioside potentiation of NGF-independent agents on sensory ganglia. Neurosci. Lett. 90: 21–26.CrossRefGoogle Scholar
  61. 61.
    Leon, A., Dal Toso, R., Presti, D., Benvegnù, D., Facci, L., Kirschner, G., Tettamanti, G. and Toffano, G. (1988) Development and survival of neurons in dissociated fetal mesencephalic serum-free cultures: II. Modulatory effects of gangliosides. J. Neurosci. 8: 746–753.Google Scholar
  62. 62.
    Skaper, S.D. and Varon, S. (1985) Ganglioside GM1 overcomes serum inhibition of neuritic outgrowth. Internatl. J. Dev. Neurosci. 3: 187–198.CrossRefGoogle Scholar
  63. 63.
    Tettamanti, G., Ledeen, R.W., Sandhoff, K., Nagai, Y. and Toffano, G. (1986) Gangliosides and Neuronal Plasticity. Fidia Research Series, vol. 6, Liviana Press, Padova.Google Scholar
  64. 64.
    Mahadik, S.P. and Karpiak, S.K. (1988) Gangliosides in treatment of neural injury and disease. Drug Dev. Res. 15: 337–360.CrossRefGoogle Scholar
  65. 65.
    Skaper, S.D., Leon, A. and Toffano G. (1989) Ganglioside function in the development and repair of the nervous system: from basic science to clinical application. Molec. Neurobiol., in press.Google Scholar
  66. 66.
    Sabel, B.A., Slavin, M.D. and Stein, D.G. (1984) GM1 ganglioside treatment facilitates behavioral recovery from bilateral brain damage. Science 225: 340–342.CrossRefGoogle Scholar
  67. 67.
    Karpiak, S.E. (1983) Ganglioside treatment improves recovery of alteration behavior after unilateral entorhinal cortex lesion. Exp. Neurol. 81: 330–339.CrossRefGoogle Scholar
  68. 68.
    Toffano, G., Agnati, L.F., Fuxe, K., Aldinio, C., Consolazione, A., Valenti, G. and Savoini, G. (1984) Effect of GM1 ganglioside treatment of the recovery of dopaminergic nigrostriatal neurons after different types of lesion. Acta Physiol. Scand. 122: 313–321.Google Scholar
  69. 69.
    Gradkowska, M., Skup, M., Kiedrowski, L Calzolari, S. and Oderfeld-Nowak, B. (1986) The effect o f GM1 ganglioside of cholinergic and serotoninergic systems i n the rat hippocampus following partial denervation is dependent on the degree of fiber regeneration. Brain Res 375: 417–422.Google Scholar
  70. 70.
    Gasser, U.E., Weskamp, G., Otten, U. and Dravid, A.R. (1986) Time course of elevation of nerve growth factor (NGF) content in the hippocampus and septum following lesions of the septohippocampal pathway in rats. Brain Res. 376: 351–356.CrossRefGoogle Scholar
  71. 71.
    Nieto-Sampedro, M., Manthorpe, M., Barbin, G., Varon, S. and Cotman, C.W. (1983) Injury-induced neuronotrophic activity in adult rat brain. Correlation with survival of delayed implants in a wound cavity. J. Neurosci. 3: 2219–2229.Google Scholar
  72. 72.
    Vantini, G., Fusco, M., Bigon, E. and Leon, A. (1988) GM1 ganglioside potentiates the effect of nerve growth factor in preventing vinblastine-induced sympathectomy in newborn rats. Brain Res. 448: 252–258.CrossRefGoogle Scholar
  73. 73.
    Cuello, A.C., Garofalo, L., Kenigsberg, R.L. and Maysinger, D. (1989) Gangliosides potentiate in vivo and in vitro effects of nerve growth factor on central cholinergic neurons. Proc. Natl. Acad. Sci. USA 86: 2056–2060.CrossRefGoogle Scholar
  74. 74.
    Price, D.L. (1986) New Perspectives on Alzheimer’s disease. Ann. Rev. Neurosci. 9: 489–512.CrossRefGoogle Scholar
  75. 75.
    Whitehouse, P.J., Price, D.L., Struble, R.G., Clark, A.W., Coyle, J.T. and De Long, M.R. (1982) Alzheimer’s disease and senile dementia: loss of neurons in the basal forebrain. Science 215: 1237–1239.CrossRefGoogle Scholar
  76. 76.
    Perry, E.R., Tomlinson, B.E., Blessed, G., Bergmann, K., Gibson, P.H. and Perry, R.H. (1978) Correlation of cholinergic abnormalities with senile plaques and mental test scores in senile dementia. Brit. Med. J. II: 1457–1459.CrossRefGoogle Scholar
  77. 77.
    Lärkfors, L., Ebendal, T., Whittemore, S.R., Persson, H., Hoffer, B.J. and Olson, L. (1987) Decreased level of nerve growth factor (NGF) and its messenger RNA in the aged rat brain. Mol. Brain Res. 3: 55–60.CrossRefGoogle Scholar
  78. 78.
    Fischer, W., Wictorin, K., Björklund, A., Williams, L.R., Varon, S. and Gage, F.H. (1987) Amelioration of cholinergic neuron atrophy and spatial memory impairment in aged rats by nerve growth factor. Nature 329: 65–68.CrossRefGoogle Scholar
  79. 79.
    Haroutunian, V., Kanof, P.D. and Davis, R.L. (1986) Partial reversal of lesion-induced deficits in cortical cholinergic markers by nerve growth factor. Brain Res. 386: 397–399.CrossRefGoogle Scholar
  80. 80.
    Mahadik, S.P., Vilim, F., Korenowsky, A. and Karpiak, S.E. (1988) GM1 ganglioside protects nucleus basalis from excitotoxin damage: reduced cortical cholinergic losses and animal mortality. J. Neurosci. Res. 20: 479–483.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Stephen D. Skaper
    • 1
  • Alberta Leon
    • 1
  • Gino Toffano
    • 1
  1. 1.Fidia Research LaboratoriesAbano TermeItaly

Personalised recommendations