Exogenous Nerve Growth Factor Stimulates Choline Acetyltransferase Activity in Basal Forebrain of Axotomized and Aged Rats

  • Lawrence R. Williams
  • Karen S. Jodelis
  • Melody R. Donald
  • Henry K. Yip
Part of the Advances in Behavioral Biology book series (ABBI, volume 36)


Nerve growth factor (NGF) is physiologically critical for the survival and normal development of sympathetic and spinal sensory neurons, and for their maintenance in the adult (1,2). NGF has been found to have a similar role in the mammalian central nervous system (CNS) (3). NGF was first implicated in CNS function when Schwab et al. (4) found specific retrograde transport of exogenous NGF from cerebral and hippocampal cortices to neuronal cell bodies in the rat basal forebrain. NGF is now known to be present and produced in the CNS, and is in largest amount in the cortex and hippocampus, the target tissues for neurons in the basal forebrain (3).


Nerve Growth Factor Cholinergic Neuron Basal Forebrain Nerve Growth Factor Receptor ChAT Activity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Levi-Montalcini, R., and Angeletti, P.U. (1968) Nerve growth factor. Physiol. R.v. 48: 534–569.Google Scholar
  2. 2.
    Thoenen, H., Bandtlaw, C., and Heumann, R. (1987) m e physiological function of nerve growth factor in the central nervous system, Comparison with the periphery. Bev. Physiol Biochem. Pharmacol. 109:146–178.Google Scholar
  3. 3.
    Whittemore, S.R., and Seiger, A. (1987) The expression, localization and functional significance of B-nerve growth factor in the central nervous system. Brain Research Rev. 12: 439–464.CrossRefGoogle Scholar
  4. 4.
    Schwab, M.E., Otten, U., Agid, Y., and Thoenen, H. (1979) Nerve growth factor (NGF) in rat CNS: Absence of specific retrograde axonal transport and tyrosine hydroxylase induction in locus coeruleus and substantia nigra. Grain Research 168: 473–483.CrossRefGoogle Scholar
  5. 5.
    Stewart, S.S., and Appel, S.H. (1988) Trophic factors in neurologic disease. Ann. Rev. Med. 39: 193–201.CrossRefGoogle Scholar
  6. 6.
    Varon, S., Manthorpe, M., and Williams, L.R. (1984) Neuronotrophic and neurite promoting factors and their clinical potentials. DPv. Neurosci. 62: 73–100.Google Scholar
  7. 7.
    Hefti, F., and Weiner, W.J. (1986) Nerve growth factor and Alzheimer’s disease. Ann. Neurol. 20: 275–281.CrossRefGoogle Scholar
  8. 8.
    Hefti, F. (1986) Nerve growth factor promotes survival of septal cholinergic neurons after fimbrial transections. J. Neurosci. 6: 2155–2162.Google Scholar
  9. 9.
    Williams, L.R., Varon, S., Peterson, G.M., Wictorin, K., Fischer, W., Ejorklund, A. and Gage, F.H. (1986) Continuous infusion of Nerve Growth Factor prevents basal forebrain neuronal death after fimbriafornix transection. Proc. Nat. Acad. Sci. (USA) 83: 9231–9235.CrossRefGoogle Scholar
  10. 10.
    Kromer, L.F. (1987) Nerve growth factor treatment after brain injury prevents neuronal death. Sciences 235: 214–235.CrossRefGoogle Scholar
  11. 11.
    Hefti, F., Dravid, A., and Hartikka, J. (1984) Chronic intraventricular injections of nerve growth factor elevate hippocampus choline acetyltransferase activity in adult rats with partial septo-hippocampal lesions. Frain 293: 305–311.Google Scholar
  12. 12.
    Montero, C.N., and Hefti, F. (1988) Rescue of lesioned septal cholinergic neurons by nerve growth factor: specificity and requirement for chronic treatment J. Neurosci. 8: 2986–2999.Google Scholar
  13. 13.
    Yip, H., and Williams, L.R. (1988) Plasticity of NGF receptors in the rat basal forebrain following axotomy and exogenous N. Soc. N.urosci. Abstr. 14: 256.Google Scholar
  14. 14.
    Mobley W.C., Rutkowski, J.L., Tennekoonn, G.I., Buchhanan, K., and Jonston, M.V. (1985) Choline acetyltransferase in striatum of neonatal rats increased by nerve growth factor. Science 229: 284–287.CrossRefGoogle Scholar
  15. 15.
    Hefti, F., Hartikka, J., Eckenstein, F., Gnahn, H., Heuman, R., and Schwab, M. (1985) Nerve growth factor increases choline acetyltransferase but not survival or fiber outgrowth of cultured fetal septal cholinergic neurons. Neuroscience 14: 55–68.CrossRefGoogle Scholar
  16. 16.
    Gnahn, H., Hefti, F., Heumann, R., Sc3hwab, M.E., and Thoenen, H. (1983) NGF-mediated increase of choline acetyltransferase (ChAT) in the neonatal rat forebrain: evidence for a physiological role of NGF in the brain? Dev. Brain Research 9. 45–52.Google Scholar
  17. 17.
    Mobley W.C., Rutkowski, J.L., Tennekoon, G.I., Gemski, J., Buchanan, K., and Johnston, M.V. (1986) Nerve growth factor increases choline aoetyltransferase activity in developing basal forebrain neurons. Nol. Brain Research 1: 53–62.CrossRefGoogle Scholar
  18. 18.
    Johnston, M.V., Rutkawski, J.L., Wainer, B.H., Long, J.B., and Mobley, W.C. (1987) NGF effects on developing forebrain cholinergic neurons are regionally specific. NPurochem. Rea. 12: 985–994.Google Scholar
  19. 19.
    Buxser, S.E., Watson, L., and Johnson, G.L. (1983) A comparison of binding properties and structure of NGF receptor on PC12 pheochromocytoma and A875 melanoma cells J. Cellular BiocheM. 22: 219–233.CrossRefGoogle Scholar
  20. 20.
    Williams, L.R., Vahlsing, H.L., LindamoDd, T., Gage, F.H., Varon, S. and Manthorpe, M. (1987) A small gauge cannala device for continuous infusion of exogenous agents into the brain. Fxp. Neurol. 95: 743–754.Google Scholar
  21. 20.
    Williams, L.R., Vahlsing, H.L., LindamoDd, T., Gage, F.H., Varon, S. and Manthorpe, M. (1987) A small gauge cannala device for continuous infusion of exogenous agents into the brain. Fxp. Neurol. 95: 743–754.Google Scholar
  22. 22.
    Chandler, C.E., Parsons, L.M., Hosang, M., and Shooter, E.M. (1984) A monoclonal antibody modulates the interaction of nerve growth factor with PC12 cells. J. Biol. Chem. 259: 6882–6889.Google Scholar
  23. 22.
    Chandler, C.E., Parsons, L.M., Hosang, M., and Shooter, E.M. (1984) A monoclonal antibody modulates the interaction of nerve growth factor with PC12 cells. J. Biol. Chem. 259: 6882–6889.Google Scholar
  24. 24.
    Cuello, A.C., and Carson, S. (1983) Microdissections of fresh rat brain tissue slices. In Dissection Techniques. (ed: Cuello, A.C.) John Wiley amd Sons. Chinchester, pp. 37–125.Google Scholar
  25. 25.
    Fryer, H.J.L., Davis, G.E., Manthorpe, M., and Varon, S. (1986) Lowry protein assay using an automatic microtiter plate spectrophotometer. Anal. Biochem. 153: 262–266.Google Scholar
  26. 26.
    Loy, R., and Milner, T.A. (1983) Neonatal steroid treatment alters axonal sprouting in adult hippocampus: Sexually dimorphic development of target neruons. In: Nervous System Regeneration, (eds: Haber, B., Perez-Polo, R., Hashim, G.A., and Stella, A.M.G. ), A.R. Liss, NY pp. 417–423.Google Scholar
  27. 27.
    Harrell, L.E., and Parsons, D.S. (1988) Role of gender in the behavioral effects of peripheral sympathetic in growth. Exp. Neural. 99: 315–325.Google Scholar
  28. 28.
    Larkfors, L., Ebendal, T., Whittemore, S.R., Perrsson, H., Hoffer, B., and Olson, L. (1988) Developmental appearance of nerve growth factor in the rat brain: significant deficits in the aged forebrain. Prag. Brain Res. 78: 27–31.CrossRefGoogle Scholar
  29. 29.
    Springer, J.E., Koh, S., Tayrien, M.W., and Loy, R. (1987) Basal forebrain magnocellular neurons stain for nerve grawth factor receptor: Correlation with cholinergic cell bodies and effects of axotomy. J. Neurosci. Research 17: 111–118.CrossRefGoogle Scholar
  30. 30.
    Armstrong, D.M., Buzsaki, G., Chen, K., Ruiz, R., Sheffield, R., and Gage, F.H. (1987) Cholinergic neurotransmission in the aged rat, A behavioral, electrophysiological, and anatomical study Soc. Neurosci. AbatZ. 13: 434.Google Scholar
  31. 31.
    Decker, M.W. (1987) The effects of aging on hippocampal and cortical projections of the forebrain cholinergic system Brain Bas. Rev. 12: 423–438.Google Scholar
  32. 32.
    Strong, R., Hicks, P., Hsu, L., Bartus, R.T. and Enna, S.J. (1980) Age-related alterations in the rodent brain cholinergic system and beavior. Neurobiol. Aging 1: 59–63.Google Scholar
  33. 33.
    Fischer, W., Wictorin, K., Bjorklund, A., Williams, L.R., Varon, S., and Gage, F.H. (1987) Intracerebral infusion of Nerve Growth Factor ameliorates cholinergic neuron atrophy and spatial memory impairments in aged rats. Nature 329: 65–68.CrossRefGoogle Scholar
  34. 34.
    Schwaber, J.S., Rogers, W.T., Satoh, K., and Fibiger, H.C. (1987) Distribution and organization of cholinertic neurons in the rat forebrain demonstrated by computer-aided data acquisition and three-dimensional reconstruction. J. Comp. Neural. 263: 309–325.CrossRefGoogle Scholar
  35. 35.
    Melander, T., Staines, W.A., Hokfelt, T., Rokaeus, A., Eckenstein, F., Salvaterra, P.M., and Wainer, B.H. (1985) Galanin-like immunoreactivity in cholinergic neurons of the septum-basal forebrain complex projecting to the hippocampus of the rat. Brain Res. 360: 130–138.CrossRefGoogle Scholar
  36. 36.
    Wenk, G.L., and Rokaeus, A. (1988) Basal forebrain lesions differentially alter galanin levels and acetylcholinergic receptors in the hippocampus and neocortex. Brain Res. 460: 17–21.CrossRefGoogle Scholar
  37. 37.
    Hagg, T., Hagg, F. Vahlsing, H.L., Manthorpe, M. and Varon, S. (1989) Nerve growoth factor effects on cholinergic neurons of neostriatum and nucleus accumbels in the adult rat. Neurosci. in press.Google Scholar
  38. 38.
    Chan-Palay, V. (1988) Galanin hyperinnervates surviving neurons ofthe human basal nucleus of Meynert in dementias of Alzheimer’s and Parkinson’s disease: A hypothesis for the role of galanin inaocentuating cholinergic dysfunction in dementia. J. Comp. Neuro1. 273: 453–557.Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Lawrence R. Williams
    • 1
  • Karen S. Jodelis
    • 1
  • Melody R. Donald
    • 1
  • Henry K. Yip
    • 2
  1. 1.CNS Diseases Research, Unit 7251-209-5The Upjohn CompanyKalamazooUSA
  2. 2.Department of AnatomyUniversity of Utah, School of MedicineSalt Lake CityUSA

Personalised recommendations