A Functionalized Congener Approach to Muscarinic Ligands

  • Kenneth A. Jacobson
  • Barton J. Bradbury
  • Jesse Baumgold
Part of the Advances in Behavioral Biology book series (ABBI, volume 36)


Most clinically available cholinergic drugs (eg. the agonist pilocarpine, 1, and the antagonist atropine, 2, Figure 1) are non-selective in their interaction with muscarinic receptor subtypes. The recent cloning, sequencing, and expression of five separate genes for muscarinic receptors (1–4), has raised the possibility of developing novel organic compounds that act as agonists or antagonists at one of these subtypes. Selective compounds could be therapeutically useful in treating a variety of diseases, including Alzheimer’s disease, cardiac disease, neurogenic bladder, and certain sleep disorders. Futhermore, such specific compounds, by virtue of their subtype selectivity, should be devoid of many of the side effects of currently used compounds.


Muscarinic Receptor Adenosine Receptor Muscarinic Agonist Muscarinic Receptor Subtype Pyrrolidone Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bonner, T. I., Buckley, N. J., Young, A. C. and Brann, M. R. (1987) Identification of a family of muscarinic acetylcholine receptor genes Science 237: 527–532.CrossRefGoogle Scholar
  2. 2.
    Peralta, E. G., Ashkenazi, A., Winslow, J. W., Smith, D. H., Ramachandran, J. and Capon, D. J. (1987) Distinct primary structures, ligandbinding properties and tissue-specific expression of four human muscarinic acetylcholine receptors. EMBO J. 6: 3923–3929.Google Scholar
  3. 3.
    Maeda, A., Kubo, T., Mishina, M. and Numa, S. (1988) Tissue distribution of mRNAS encoding muscarinic acetylcholine receptor subtypes. FEBS Lett 239: 339–342.CrossRefGoogle Scholar
  4. 4.
    Bonner, T. I., Young, A. C., Brann, M. R. and Buckley, N. J. (1988) Cloning and expression of human and rat m5 muscarinic acetylcholine receptor genes. Neuron 1. 403–410.CrossRefGoogle Scholar
  5. 5.
    Jacobson, K. A., Ukena, D., Kirk, K. L., and Daly, J. W. (1986a) [3H]Xanthine amine congener of 1,3-dipropy1–8-phenylxanthine: an antagonist radioligand for adenosine receptors. proc. Natl. Acad. Sci USA 83: 4089–4093.CrossRefGoogle Scholar
  6. 6.
    Jacobson, K. A., Kirk, K. L., Padgett, W. L., and Daly, J. W. (1986b) A functionalized congener approach to adenosine receptor antagonists: amino acid conjugates of 1,3-dipropylxanthine. Mol. Pharmacol 29: 126–133.Google Scholar
  7. 7.
    Jacobson, K. A., Ukena, D., Padgett, W., Kirk, K. L., Daly, J. W. (1987) Molecular probes for extracellular adenosine receptors. Biochem. Pharmacol. 36: 1697–1707.CrossRefGoogle Scholar
  8. 8.
    Jacobson, K. A., Ukena, D., Padgett, W., Kirk, K. L., Daly, J. W. (1987) Molecular probes for extracellular adenosine receptors. Biochem. Pharmacol. 36: 1697–1707.CrossRefGoogle Scholar
  9. 9.
    Hammer, R., Berrie, C. P., Birdsall, N. J. M., Burgen, A. S. V., and Hulme, E. C. (1980) Pirenzepine distinguishes between different subclasses of muscarinic receptors. Nature 283: 90–92.CrossRefGoogle Scholar
  10. 10.
    Eglen, R. M. and Whiting, R. L. (1986) Muscarinic receptor subtypes: a critique of the current classification and a proposal for a working nomenclature. J. Auton. Pharmac. 5: 323–346.Google Scholar
  11. 11.
    Baumgold, J. and White, T. (1989) Coupling and pharmacological characteristics of muscarinic receptors from SK-N-SH human neuroblastoma cells: comparison with those from NG108–15 cells. Biochem. Pharmacol. 38: 1605–1616.CrossRefGoogle Scholar
  12. 12.
    Peralta, E. G., Ashkenazi, A., Winslow, J. W., Ramachandran, J. and Capon, D. J. (1988) Differential regulation of PI hydrolysis and adenylyl cyclase by muscarinic receptor subtypes. Nature 334: 434–437.CrossRefGoogle Scholar
  13. 13.
    Shapiro, R.., Schere, N. M., Habecker, B. A., Subers, E. M., and Nathanson, N. M. (1988) Isolation, sequence and functional expression of the mouse M1 muscarinic acetylcholine receptor gene. J. Biol. Chem. 263: 18397–18403.Google Scholar
  14. 14.
    Baumgold, J. and Drobnick, A. (1989) An agonist that is selective for adenylate cyclase coupled muscarinic receptors. Mol. Pharmacol., submitted.Google Scholar
  15. 15.
    Doods, H. N. (1987) Selective muscarinic antagonist for peripheral muscarinic receptor subtypes. In• pharmacology (eds: Rand, M.J. and Raper C.), Elsevier Science, New York, pp. 59–66.Google Scholar
  16. 16.
    Nilvebrant, L. and Sparf, B. (1988) Receptor binding profiles of some selective muscarinic antagonists. stir. J. Pharmacol 151: 83–96.Google Scholar
  17. 17.
    Rzeszotarski, W. J., McPherson, D. W.., Ferkany, J. W.., Kinnier, W. J., Noronha-Blob, L., and Kirdien-Rzeszotarski, A. (1988) Affinity and selectivity of the optical isomers of 3-quinuclidinyl benzilate and related muscarinic agonists. J. Med. Chem. 31: 1463–1466.CrossRefGoogle Scholar
  18. 18.
    Chang, Y-F. (1988) Structure-binding relationship of quinuclidinyl benzilate analogs on N4TG1 neuroblastoma muscarinic receptors. Neurochem. Res. 13: 455–462.Google Scholar
  19. 19.
    Melchiorre, C. (1988) Polymethylene tetramines: A new generation of selective muscarinic anatagonists. Trends Pharmacol. Sci. 9: 216–220.Google Scholar
  20. 20.
    Ono, S., Saito, Y., Ohgane, N., Kawanishi, G., and Mizobe, F. (1988) Heterogeneity of muscarinic autoreceptors and heteroreceptors in the rat brain: effects of a novel M1 agonist, AF102B. Eur J Pharmacol. 155: 7784.CrossRefGoogle Scholar
  21. 21.
    Ringdahl, B. and Jenden, D. J. (1983) Pharmacological properties of oxotremorine and its analogs. Life Sci. 32: 2401–2413.CrossRefGoogle Scholar
  22. 22.
    Fisher, S. K., Klinger, P. D. and Agranoff, B. W. (1983) Muscarinic agonist binding and phospholipid turnover in brain. J. B;ol. Chem. 258: 7358–7363.Google Scholar
  23. 23.
    Nilsson, B. J., Ringdahl, B. and Hacksell, U. (1988) Derivatives of the muscarinic agent N-methyl-N-(1-methyl-4-pyrrolidino-2- butynyl)acetamide. J. Med. Chem. 31: 577–582.CrossRefGoogle Scholar
  24. 24.
    Bebbington, A., Brimblecombe, R. W. and Shakeshaft, D. (1966) The central and peripheral activity of acetylenic amines related to oxotremorine. Brit. J. Pharmacol. 26: 56–67.Google Scholar
  25. 25.
    Resul, B., Dahlbom, R., Ringdahl, B. and Jenden, D. J. (1982) N-Alkyl- N(4-tert-amino-l-methyl-2-butynyl)carboxamides, a new class of potent oxotremorine antagonists. Bur. J. Med. Chem. 17: 317–322.Google Scholar
  26. 26.
    Casamenti, F., Cosi, C., and Pepeu, G. (1986) Effect of BM-5, a presynaptic agonist, on cortical acetylcholine release. Eur. J. Pharmacol 122: 288–290.CrossRefGoogle Scholar
  27. 27.
    Whitehouse, P. J., Price, D. L., Struble, R. G., Clark, A. W., Coyle, J. T., and DeLong, M. R. (1982) Alzheimer’s disease and senile dementia: los of neurons in the basal forebrain Science 215: 1237–1239.CrossRefGoogle Scholar
  28. 28.
    Kellar, K. J., Whitehouse, P. J., Martino-Barrows, A. M., Marcus, K., and Price, D. L. (1987) Muscarinic and nicotinic cholinergic binding sites in the Alzheimer’s disease cerebral cortex. Brain Res. 436: 62–68.CrossRefGoogle Scholar
  29. 29.
    Hershenson, F. M. and Moos, W. H. (1986) Drug development for senile cognitive decline. J Mad. Chem. 29: 1125–1130.CrossRefGoogle Scholar
  30. 30.
    Bradbury, B., Baumgold, J., and Jacobson, K. A. (1989) Functionalized congener approach for the design of novel muscarinic agents. Synthesis an pharmacological evaluation of N-methyl-N-[4 -(1-pyrrolidinyl)-2- butynyl) amides. J. Med. Chem., submitted.Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Kenneth A. Jacobson
    • 1
  • Barton J. Bradbury
    • 1
  • Jesse Baumgold
    • 2
  1. 1.Laboratory of ChemistryNIDDKBethesdaUSA
  2. 2.Laboratory of Molecular and Cellular Neurobiology, Section on Membrane BiochemistryNINDS, NIHBethesdaUSA

Personalised recommendations