Biocompatibility — A System Approach

  • Horst Klinkmann
  • Dieter Falkenhagen
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 260)


The use of more than 2 billion biomaterial devices per year in therapeutic medicine elucidates the magnitude of one of the biggest problems today’s medicine is dealing with. Clinical application of biomaterials has by far exceeded in both quality and quantity our knowledge about the interaction between the biomaterial and the human organism (1).


Complement Activation Human Organism Artificial Organ Artificial Kidney Quality Concept 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Klinkmann, H.: The role of biomaterials in the application of artificial organs. In: Paul, J.P., Gaylor, J.D.S., Courtney, J.M., Gilchrist, T. (eds.), Biomaterial in Artificial Organs, p. 1, Macmillan, London (1984) .Google Scholar
  2. 2.
    Szycher, M.: Thrombosis, hemostasis, and thrombolysis at prosthetic interfaces. In: Szycher, M. (ed.), Biocompatible Polymers, Metals, and Composits, p. 1, Technomic Publ. Co., Lancaster, Pennsylvania (1983).Google Scholar
  3. 3.
    Klinkmann, H., Falkenhagen, D., Courtney, J.M.: Clinical relevance of biocompatibility. “The material cannot be divorced from the device”. In: Nefrologia, Vol.VII. Suplemento 3: 13 (1987).Google Scholar
  4. 4.
    Bjornson, J.: Thrombus formation in the artificial kidney. Scand. J. Urol. Nephrol. 12:251 (1978).PubMedCrossRefGoogle Scholar
  5. 5.
    Wilson, R.D., Lelah, M.D. , Cooper, S.L.: Blood-material interactions: Assessment of in-vitro and in-vivo test methods. In: Williams, D.F. (ed.), Techniques of Biocompatibility Testing, Vol.II: p. 151 (1986).Google Scholar
  6. 6.
    Klinkmann, H., Wolf, H., Schmitt, E.: Definition of biocompatibility. Contrib. Nephrol. 37:70 (1984).PubMedGoogle Scholar
  7. 7.
    Craddock, P.R., Fehr, J., Dalmasso, A.P., Brigham, K.L., Jacob, H.S.: Hemodialysis leukopenia. Pulmonary vascular leucostasis resulting from complement activation by dialyzer cellophane membranes. J. Clin. Invest. 59:879 (1977).PubMedCrossRefGoogle Scholar
  8. 8.
    Ivanovich, P., Chenoweth, D.E., Schmidt, R., Klinkmann, H., Boxer, L.A., Jacob, H.S., Hammerschmidt, D.E.: Symptoms and activation of granulocytes and complement with two dialysis membranes. Kidney Int. 24:758 (1983).PubMedCrossRefGoogle Scholar
  9. 9.
    Chenoweth, D.E.: Biocompatibility of hemodialysis membranes. Evaluation with C3a anaphylatoxin radioimmunoassays. Am. Soc. Artif. Intern. Organs J. 7:44 (1984).Google Scholar
  10. 10.
    Hakim, R.M., Fearon, D.T., Lazarus, J.M.: Biocompatibility of dialysis membranes: effects of chronic complement activation. Kidney Int. 26:194 (1984).PubMedCrossRefGoogle Scholar
  11. 11.
    Wegmüller, E., Montandon, A., Nydegger, U., Desceudres, D.: Biocompatibility of different hemodialysis membranes: activation of complement and leukopenia. Int. J. Artif. Organs 9:85 (1986).PubMedGoogle Scholar
  12. 12.
    Chenoweth, D.E., Cheung, A.L., Ward, D.M., Henderson, L.W.: Anaphylatoxin formation during hemodialysis: effects of two different dialyzer membranes. Kidney Int. 24:764 (1983) .PubMedCrossRefGoogle Scholar
  13. 13.
    Bingel, M., Lonnemann, G. , Shaldon, S., Koch, K.M., Dinarello, C.A.: Human interleukin-1 production during hemodialysis. Nephron 43:161 (1986).PubMedCrossRefGoogle Scholar
  14. 14.
    Cooper, N.R.: The complement system. In: Fundenberg, H.W., Sites, D.P., Caldwell, J.L., Wells, J.V., (eds.), Basic and Clinical Immunology, Chapter 6, Lange Medical Publications, Los Altos, CA (1976).Google Scholar
  15. 15.
    Rudy, S., Gigli, L., Austen, K.F.: The complement system of man. New Engl. J. Med. 287:489, 545, 592, 642 (1972) .CrossRefGoogle Scholar
  16. 16.
    Henderson, L.W., Cheung, A.K., Chenoweth, D.E.: Choosing a membrane. Am. J. Kidney Pis. 3:5 (1983).Google Scholar
  17. 17.
    Hoenich, N.A. , Johnston, S.R.D., Woffindin, C., Kerr, D.N.S.: Hemodialyzers leucopenia: the role of membrane type and re-use. Contr. Nephrol. 37:120 (1984).Google Scholar
  18. 18.
    Falkenhagen, D., Bosch, T., Brown, G.S., Schmidt, R., Holtz, M., Bauermeister, U., Gurland, H., Klinkmann, H.: A clinical study on different cellulosic dialysis membranes. Nephrol. Dial. Transplant. 2:537 (1985).Google Scholar
  19. 19.
    Bosch, T., Schmidt, B., Samtleben, W., Gurland, H.J.: Biocompatibility and clinical performance of a new modified cellulose membranes. Clin. Nephrol. 26 (Suppl. 1):S22 (1986).Google Scholar
  20. 20.
    Klinkmann, H.: Clinical Relevance of Biocompatibility in Hemodialysis. “Verhandelingen van de Koningklijke Academie voor Geneeskunde van Belgie”, XLIX 1:59 (1987).Google Scholar
  21. 21.
    Aljama, P., Bird, D.A.E., Ward, M.K., Feest, T.G., Walker, W., Tanboga, H.: Hemodialysis-induced leucopenia and activation of complement. Effects of different membranes. Proc. Eur. Dial. Transplant. Assoc. 15:144 (1978).PubMedGoogle Scholar
  22. 22.
    Jacob, A.J., Gavellas, G. , Zarco, R., Perez, G., Bourgoignie, J.J.: Leucopenia, hypoxia and complement function with different hemodialysis membranes. Kidney Int. 18:505 (1980).PubMedCrossRefGoogle Scholar
  23. 23.
    Jorstadt, S., Smeby, L.C., Balstad, T., Wideroe, T.-E.: Generation and removal of anaphylatoxins during hemofiltration with five different membranes. Blood Purif. 6:325 (1988).CrossRefGoogle Scholar
  24. 24.
    Shaldon, S., Deschodt, G., Branger, B., Granolleras, G. , Baldamus, C.A., Koch, K.M., Lysaght, M. J. , Dinarello, C.A.: Hemodialysis hypotension: The interleukin hypothesis restated. Proc. Eur. Dial. Transplant. Ass. 22:229 (1985).Google Scholar
  25. 25.
    Lonnemann, G., Koch, K.M., Shaldon, S., Dinarello, CA.: Plasma interleukin-1 activity in humans undergoing hemodialysis with regenerated cellulosic membranes. Lymphokine Res. 6:63 (1987).PubMedGoogle Scholar
  26. 26.
    Dinarello, C.A.: Interleukin-1 — Its multiple biological effects and its association with hemodialysis. Blood Purif. 6:164 (1988).PubMedCrossRefGoogle Scholar
  27. 27.
    Vanherweghem, J.L., Drukker, W., Schwarz, A.: Clinical significance of blood-device interaction in hemodialysis. A review. Int. J. Artif. Organs. 10:219 (1987).PubMedGoogle Scholar
  28. 28.
    Gejyo, R., Yamada, T., Oami, S., Nakagawa, Y., Kunimoto, T.,Kataoka, H., Sizuki, M., Hirasawa, Y., Shirahama, T., Cohen, A.S., Schmid, K.: A new form of amyloid protein associated with hemodialysis was identified as β2-microglobulin. Biochem. Biophys. Res. Commun. 129:701 (1985).PubMedCrossRefGoogle Scholar
  29. 29.
    Ritz, E., Bommer, J.: Beta-2-microglobulin-derived amyloid — problems and perspectives. Blood Purif. 6:61 (1988) .PubMedCrossRefGoogle Scholar
  30. 30.
    Floege, J., Granolleras, C., Koch, K.M., Shaldon, S.: Which membrane? Should beta-2-microglobulin decide on the choice of today’s hemodialysis membrane? Nephron 50:177 (1988).PubMedCrossRefGoogle Scholar
  31. 31.
    Schmidt, H.: Staphylococcus saprophyticus als Erreger von Harnwegsinfektionen. B-Promotion, Rostock (1988).Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Horst Klinkmann
    • 1
  • Dieter Falkenhagen
    • 1
  1. 1.Dept. Internal MedicineWilhelm Pieck UniversityRostockGerman Democratic Republic

Personalised recommendations