Advertisement

Neutrophil Activation During Hemodialysis

  • Marianne Haag-Weber
  • Peter Schollmeyer
  • Walter H. Hörl
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 260)

Abstract

Dialyzing membranes are often used in clinical circumstances and are an important factor in the consideration of biocompatibility with non-biological medical paraphernalia. Depending on the unique physical characteristics of the various filters employed, there are some significant side effects regard to cellular activation.

Keywords

Complement Activation Neutral Protease Uremic Patient Specific Granule Cellulose Hydrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Losito, V. Buoncristiani and C. Cecchini, Abnormal leucocyte locomotion induced by hemodialysis membranes, A clue to dialysis leukopenia. J Clin Lab Immunol 10:87 (1983)PubMedGoogle Scholar
  2. 2.
    B. Wierusz-Wysocka, H. Wysocki, R. Czarnecki, H. Siekierka, B. Kazimierz and K. Wysocki, Influence of hemodialysis on plasma chemotactic responsiveness of polymorphonuclear neutrophils. Artif Organs 7:159 (1983)PubMedCrossRefGoogle Scholar
  3. 3.
    W. Marker, P.A. Waridel, C. Heierli and J.P, Wauters. Neutrophil functions during hemodialyis. Contrib Nephrol 62:99 (1988)Google Scholar
  4. 4.
    R.C: Vanholder, A. Dhondt and S.M.G. Ringoir, Challenge of phagocyte metabolism by extracorporeal circulation and membrane contact: A biocompatible test. Trans Am Soc Artif Intern Organs 34:214 (1988)Google Scholar
  5. 5.
    M. Haag-Weber, G. Fiedler, P. Schollmeyer and W.H. Hörl, Activation of neutrophil glycogenolysis during hemodialysis. Blood (submitted for publication)Google Scholar
  6. 6.
    J. Metcoff, R. Lindemann, D. Baxter and J. Peterson, Cell metabolism in uremia. Am J Clin Nutr 30:1627 (1978)Google Scholar
  7. 7.
    B Descamps-Latscha, Phagocyte oxidative metabolism in hemodialysis. Contrib Nephrol 62:132 (1988)PubMedGoogle Scholar
  8. 8.
    D.E. Chenoweth, The properties of human C5a anaphylatoxins: The significance of C5a formation during hemodialysis. Contr Nephrol 59:51 (1987)Google Scholar
  9. 9.
    P. Ivanovich, D.E. Chenoweth, R. Schmidt, H. Klinkmann, L.A. Boxer, H.S. Jacobs and D.E.Hammerschmidt, Symptoms and activation of granulocytes and complement with two dialyzer membranes. Kidney Int 24:758 (1983)PubMedCrossRefGoogle Scholar
  10. 10.
    R. Hällgren, P. Venge and B. Willström, Hemodialysis -induced increase in serum lactoferrin and serum eosinophil cationic protein as signs of local neutrophil and eosinophil degranulation. Nephron 29: 233 (1981)PubMedCrossRefGoogle Scholar
  11. 11.
    W.H. Hörl, H.B. Steinhauer and P. Schollmeyer, Plasma levels of granulocyte elastase during hemodialysis: effects of different dialyzer membranes. Kidney Int 28:791 (1985)PubMedCrossRefGoogle Scholar
  12. 12.
    W.H. Hörl, M. Jochum, A. Heidland and H. Fritz, Release of granulocyte proteinases during hemodialysis. Am J Nephrol 3:213 (1983)PubMedCrossRefGoogle Scholar
  13. 13.
    W.H. Hörl, R.M. Schaefer, C. Wanner, J. Bahlmann, J. Reitinger, P. Schollmeyer and A. Heidland, Enhanced plasma and intracellular levels of main granulocyte components in diabetics on dialysis. Blood Purif (in press)Google Scholar
  14. 14.
    F. Knudsen, A.H. Nielsen and P.O. Pedersen, Leukopenia and release of granulocyte elastase: interlinked membrane -dependent events during hemodialysis. Blood Purif 2:36 (1984)CrossRefGoogle Scholar
  15. 15.
    R.M. Schaefer, W.H. Hörl, K. Kokot and A. Heidland, Enhanced biocompatibility with a new cellulosic membrane:Cuprophan versus Hemophan. Blood Purif 5:262 (1987)PubMedCrossRefGoogle Scholar
  16. 16.
    J. Bonal, C. Pastor, J Teixido, J Bonet, A. Serra, R. Lauzurica, R. Romero, A. Caralps and A. Corominas, Plasma levels of granulocyte elastase:its role on the assessment of hemodialysis membrane biocompatibility (abstract) Kidney Int 30:129 (1986)Google Scholar
  17. 17.
    K. Ohlsson and I. Ohlsson, Neutral proteases of human granulocytes. III: Interaction between human granulocyte elastase and plasma protease inhibitors. Scand J Clin Lab Invest 34:349 (1974)PubMedCrossRefGoogle Scholar
  18. 18.
    W.H. Hörl, W. Riegel, H.B. Steinhauer, C. Wanner, F Thaiss, F. Bozkurt, M. Haag and P. Schollmeyer, Granulocyte activation during hemodialysis. Clin Nephrol 26 (Suppl 1):S-30 (1986)Google Scholar
  19. 19.
    J.K. Spitznagel, Intracellular and extracellular degranulation of human polymorphonuclear azurophil and specific granules induced by immune complexes, in: “Neutral Proteases of Human Polymorphonuclear Leukocytes”, K. Havemann and A. Janoff, eds., Urban & Schwarzenberg, Baltimore-Munich (1978)Google Scholar
  20. 20.
    W. Schmidt, Differential release of elastase and chymotrypsin from polymorphonuclear leukocytes, in: “Neutral Proteases of Human Polymorphonuclear Leukocytes”, K. Havemann and A. Janoff, eds., Urban & Schwarzenberg, Baltimore-Munich (1978)Google Scholar
  21. 21.
    D.E. Chenoweth, A.K. Cheung and L.W. Henderson, Anaphylatoxin formation during hemodialysis: effects of different dialyzer membranes. Kidney Int 24:764 (1983)PubMedCrossRefGoogle Scholar
  22. 22.
    D.E. Chenoweth, A.K. Cheung, D.M. Ward and L.W. Henderson, Anaphylatoxin formation during hemodialysis: comparison of new and re-used dialyzers. Kidney Int 24:770 (1983)PubMedCrossRefGoogle Scholar
  23. 23.
    D.E. Chenoweth, Complement activation during hemodialysis: clinical observations, proposed mechanisms, and theoretical implications. Artif Organs 8:281 (1984)PubMedCrossRefGoogle Scholar
  24. 24.
    A.K. Cheung and L.W. Henderson, Effects of complement activation by hemodialysis membranes. Am J Nephrol 6:81 (1986)PubMedCrossRefGoogle Scholar
  25. 25.
    R.M. Hakim, D.T. Fearon and J.M. Lazarus, Biocompatibility of dialysis membranes: effect of chronic complement activation. Kidney Int 26:194 (1984)PubMedCrossRefGoogle Scholar
  26. 26.
    R.M. Hakim, J. Breillatt, J.M. Lazarus and F.K. Port, Complement activation and hypersensitivity reactions to dialysis membranes. N Engl J Med 311:878 (1984)PubMedCrossRefGoogle Scholar
  27. 27.
    W.H. Hörl and A. Heidland, Evidence for the participation of granulocyte proteinases on intradialytic catabolism. Clin Nephrol 21:314 (1984)PubMedGoogle Scholar
  28. 28.
    W.H. Hörl, W. Riegel, P. Schollmeyer, W. Rautenberg and S. Neumann, Different complement and granulocyte activation in patients dialyzed with PMMA dialyzers. Clin Nephrol 25:304 (1986)PubMedGoogle Scholar
  29. 29.
    W.H. Hörl, W. Riegel and P. Schollmeyer, Plasma levels of main granulocyte components in patients dialyzed with polycarbonate and cuprophan membranes. Nephron 45:272 (1987)PubMedCrossRefGoogle Scholar
  30. 30.
    R.M. Schaefer, A. Heidland and W.H. Hörl, Effect of dialyzer geometry on granulocyte and complement activation. Am J Nephrol 7:121 (1987)PubMedCrossRefGoogle Scholar
  31. 31.
    C. Tetta, G. Camussi, G. Segoloni and A. Vercellone, Direct interaction between polymorphonuclear neutrophils (PMN) and dialysis membranes: role of the electrical charges (abstract). Kidney Int 29:609 (1986)Google Scholar
  32. 32.
    M. Haag-Weber, P. Schollmeyer and W.H. Hörl, Granulocyte activation in the absence of complement activation: inhibition by calcium channel blockers. Eur J Clin Invest 18:380 (1988)PubMedCrossRefGoogle Scholar
  33. 33.
    W. Riegel, G. Spillner, V. Schlosser and W.H. Hörl, Plasma levels of main granulocyte components during cardiopulmonary bypass. J Thorac Cardiovasc Surg 95:1014 (1988)PubMedGoogle Scholar
  34. 34.
    K. Kokot, M Teschner, R.M. Schaefer and A. Heidland, Stimulation and inhibition of elastase release from human neutrophil-dependence on the calcium messenger system. Mineral Electrolyte Metab 13:189 (1987)Google Scholar
  35. 35.
    M. Betz, G.M. Haenisch, E.W. Rauterberg, J. Bommer and E. Ritz, Cuprammonium membranes stimulate interleukin-1 release and arachidonic acid metabolism in monocytes in the absence of complement. Kidney Int 34:67 (1988)PubMedCrossRefGoogle Scholar
  36. 36.
    A.T. Nguyen, C. Lethias, J. Zingraff, A. Herbelin, C. Naret and B. Descamps-Latscha, Hemodialysis membrane -induced activation of phagocyte oxidative metabolism detected in vivo and in vitro within microamounts of whole blood. Kidney Int 28:158 (1985)PubMedCrossRefGoogle Scholar
  37. 37.
    G. Kolb, H. Schönemann, W. Fischer, K. Bittner, H. Lange, H. Höffken, V. Damann, K. Joseph and K. Havemann, Hemodialysis with cuprophan membranes lead to alteration of granulocyte oxidative metabolism and leucocyte sequestrion in the lung, in: “Proteases: Potential Role in Health and Disease II”, W.H. Hörl and A. Heidland, eds., Plenum, New York, p 2 (1988)Google Scholar
  38. 38.
    M. Markert, C. Heierli, T. Kuwahara, J. Frei and J.P. Wauters, Dialyzed polymorphonuclear neutrophil oxidative metabolism during dialysis: a comparative study with 5 new and reused membranes. Clin Nephrol 29:129 (1988)PubMedGoogle Scholar
  39. 39.
    M.L. McCaleb, M.S. Izzo and D.H. Lockwood, Characterization and partial purification of a factor from uremic human serum that induces insulin resistance. J Clin Invest 75:391 (1985)PubMedCrossRefGoogle Scholar
  40. 40.
    R.A. DeFronzo, J.D. Tobin, J.W. Rowe and R. Andres, Glucose intolerance in uremia. J. Clin Invest 62:425 (1978)PubMedCrossRefGoogle Scholar
  41. 41.
    C.L. Hampers, J.S. Soeldner, P.B. Doak and J.P. Merrill,Effect of chronic renal failure and hemodialysis on carbohydrate metabolism. J. Clin Invest 45:1719 (1966)PubMedCrossRefGoogle Scholar
  42. 42.
    P. Balestri, P. Rindi, M. Biagini and S. Giovanetti,Effects of uraemic serum, urea, creatinine and methylguanidine on glucose metabolism. Clin Sci 42:395 (1972)PubMedGoogle Scholar
  43. 43.
    J.M. Morgan and R.E. Morgan, Study of the effect of uremic metabolites on erythrocyte glycolysis. Metab Clin Exp 13:629 (1964)PubMedCrossRefGoogle Scholar
  44. 44.
    R. Dzurik, Metabolic alterations caused by uremia. Proc Eur Dial Transplant Assoc 17:577 (1980)PubMedGoogle Scholar
  45. 45.
    M.L. McCaleb, R. Mevorach, R.B. Freeman, M.S. Izzo and D.H. Lockwood, Induction of insulin resistance in normal adipose tissue by uremic serum. Kidney Int 25:416 (1984)PubMedCrossRefGoogle Scholar
  46. 46.
    H.M. Korchak, L.E. Rutherford and G. Weissmann, Stimulus response coupling in the human neutrophils. I. Kinetic analysis of changes in calcium permeability. J Biol Chem 259:4070 (1984)PubMedGoogle Scholar
  47. 47.
    Ch. McCall, J. Schmitt, S. Cousart, J. O’Flaherty, D. Bass and R. Wykle, Stimulation of hexose transport by human polymorphonuclear leucocytes: a possible role of protein kinase C. Biochem Biophys Res Comm 126:450 (1985)PubMedCrossRefGoogle Scholar
  48. 48.
    K.H. Krause, W. Schlegel, C.B. Wollheim, T. Andersson, F.A. Waldvogel and P.D. Lew, Chemotactic peptide activation of human neutrophils and HL-60 cells. Pertussis toxin reveals correlation between inositol triphophate generation, calcium ion transients, and cellular activation. J. Clin Invest 76:1348 (1985)PubMedCrossRefGoogle Scholar
  49. 49.
    M. Haag-Weber, M. Hable, P. Schollmeyer and W.H. Hörl, Hemodialysis improves carbohydrate metabolism in polymorphonuclear neutrophils (PMN) (abstract). Kidney Int 35:248 (1989)Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Marianne Haag-Weber
    • 1
  • Peter Schollmeyer
    • 1
  • Walter H. Hörl
    • 1
  1. 1.Department of Medicine, Division of NephrologyUniversity of FreiburgFreiburgGermany

Personalised recommendations