Advertisement

A Relativistic Theory of Nuclear Matter

  • Brian D. Serot
Part of the NATO ASI Series book series (NSSB, volume 205)

Abstract

Nuclear matter is studied in the framework of quantum hadrodynamics (QHD). As a simple first example, the nuclear equation of state is computed in the mean-field approximation to the Walecka model (QHD-I). General principles of covariant thermodynamics and thermodynamic consistency are introduced, and these principles are illustrated by recomputing the mean-field nuclear matter properties in an arbitrary reference frame. The loop expansion is proposed as a candidate for performing reliable calculations beyond the mean-field approximation, and the one-loop vacuum corrections to the mean-field results are discussed. The two-loop corrections for nuclear matter, including vacuum polarization, are then calculated. The size and nature of the two-loop corrections indicate that the loop expansion is apparently not a useful procedure in this model. Prospects for alternative expansion schemes are discussed.

Keywords

Nuclear Matter Vector Meson Baryon Density Neutron Matter Loop Expansion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. V. Shuryak, Phys. Rep. 61, 71 (1980).MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    H. A. Weldon, Phys. Rev. D26, 1394 (1982); D28, 2007 (1983).Google Scholar
  3. 3.
    E. V. Shuryak, Phys. Rep. 115, 151 (1984).MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    H. Satz, Ann. Rev. Nucl. Part. Sci. 35, 245 (1985).ADSCrossRefGoogle Scholar
  5. 5.
    L. Dolan and R. Jackiw, Phys. Rev. D9, 3320 (1974).ADSGoogle Scholar
  6. 6.
    S. Weinberg, Phys. Rev. D9, 3357 (1974).ADSCrossRefGoogle Scholar
  7. 7.
    M. B. Kislinger and P. D. Morley, Phys. Rev. D13, 2765, 2771 (1976).ADSGoogle Scholar
  8. 8.
    B. D. Serot and J. D. Walecka, Adv. Nucl. Phys. 16, 1 (1986).Google Scholar
  9. 9.
    G. Baym and L. P. Kadanoff, Phys. Rev. 124, 287 (1961).MathSciNetADSMATHCrossRefGoogle Scholar
  10. 10.
    G. Baym, Phys. Rev. 127, 1391 (1962).MathSciNetADSMATHCrossRefGoogle Scholar
  11. 11.
    W. E. Caswell and A. D. Kennedy, Phys. Rev. D25, 392 (1982).MathSciNetADSGoogle Scholar
  12. 12.
    J. C. Collins, Renormalization ( Cambridge University Press, New York, 1984 ).MATHCrossRefGoogle Scholar
  13. 13.
    C. J. Horowitz and B. D. Serot, Nucl. Phys. A464, 613 (1987).CrossRefGoogle Scholar
  14. 14.
    J. D. Walecka, Ann. Phys. (N.Y.) 83, 491 (1974).Google Scholar
  15. 15.
    S. A. Chin and J. D. Walecka, Phys. Lett. 52B, 24 (1974).Google Scholar
  16. 16.
    S. A. Chin, Ann. Phys. (N.Y.) 108, 301 (1977).Google Scholar
  17. 17.
    C. J. Horowitz and B. D. Serot, Nucl. Phys. A368, 503 (1981).CrossRefGoogle Scholar
  18. 18.
    C. J. Horowitz and B. D. Serot, Phys. Lett. 140B, 181 (1984).Google Scholar
  19. 19.
    C. Itzykson and J. Zuber, Quantum Field Theory ( McGraw-Hill, New York, 1980 ).Google Scholar
  20. 20.
    L. D. Faddeev and A. A. Slavnov, Gauge Fields: Introduction to Quantum Theory ( Benjamin/ Cummings, Reading, MA, 1980 ).MATHGoogle Scholar
  21. 21.
    P. Ramond, Field Theory: A Modern Primer (Benjamin, Reading, MA, 1981.)Google Scholar
  22. 22.
    K. Huang, Quarks, Leptons, and Gauge Fields ( World Scientific, Singapore, 1982 ).Google Scholar
  23. 23.
    F. A. Berezin, The Method of Second Quantization (Academic Press, New York,Google Scholar
  24. 24.
    S. Coleman and E. Weinberg, Phys. Rev. D7, 1888 (1973).ADSGoogle Scholar
  25. 25.
    T. D. Lee and G. C. Wick, Phys. Rev. D9, 2291 (1974).ADSGoogle Scholar
  26. 26.
    R. Jackiw, Phys. Rev. D9, 1686 (1974).ADSGoogle Scholar
  27. 27.
    J. M. Cornwall, R. Jackiw, and E. Tomboulis, Phys. Rev. D10, 2428 (1974).ADSMATHGoogle Scholar
  28. 28.
    J. Iliopoulos, C. Itzykson, and A. Martin, Rev. Mod. Phys. 47, 165 (1975).MathSciNetADSCrossRefGoogle Scholar
  29. 29.
    J. A. McNeil, J. R. Shepard, and S. J. Wallace, Phys. Rev. Lett. 50, 1439 (1983).ADSCrossRefGoogle Scholar
  30. 30.
    J. R. Shepard, J. A. McNeil, and S. J. Wallace, Phys. Rev. Lett. 50, 1443 (1983).ADSCrossRefGoogle Scholar
  31. 31.
    B. C. Clark, S. Hama, R. L. Mercer, L. Ray,Nand B. D. Serot, Phys. Rev. Lett. 50, 1644 (1983).ADSCrossRefGoogle Scholar
  32. 32.
    D. G. Boulware, Ann. Phys. (N.Y.) 56, 140 (1970).Google Scholar
  33. 33.
    J. D. Bjorken and S. D. Drell, Relativistic Quantum Mechanics ( McGraw-Hill, New York, 1964 ).Google Scholar
  34. 34.
    C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation ( Freeman, San Francisco, 1973 ).Google Scholar
  35. 35.
    R. C. Tolman, Relativity, Thermodynamics, and Cosmology (Oxford U. Press, Oxford, 1946 ).Google Scholar
  36. 36.
    W. Israel, Ann. Phys. (N.Y.) 100, 310 (1976); Physica 106A, 204 (1981).Google Scholar
  37. 37.
    A. L. Fetter and J. D. Walecka, Quantum Theory of Many-Particle Systems ( McGraw-Hill, New York, 1971 ).Google Scholar
  38. 38.
    J. D. Bjorken and S. D. Drell, Relativistic Quantum Fields ( McGraw-Hill, New York, 1965 ).MATHGoogle Scholar
  39. 39.
    R. A. Freedman, Relativistic Many-Body Studies of Nuclear Mattter at Finite Temperature (Ph. D. Thesis, Stanford University, 1978 ).Google Scholar
  40. 40.
    R. J. Furnstahl and B. D. Serot, Nucl. Phys. A468, 539 (1987).CrossRefGoogle Scholar
  41. 41.
    N. P. Landsman and Ch. G. van Weert, Phys. Rep. 145, 141 (1987).MathSciNetADSCrossRefGoogle Scholar
  42. 42.
    R. J. Furnstahl and B. D. Serot, in preparation.Google Scholar
  43. 43.
    R. P. Feynman, Rev. Mod. Phys. 20, 367 (1948).MathSciNetADSCrossRefGoogle Scholar
  44. 44.
    J. Schwinger, Proc. Nat’l. Acad. Sci. (US) 37, 452; 37, 455 (1951).Google Scholar
  45. 45.
    G. Jona-Lasinio, Nuovo Cim. 34, 1790 (1964).CrossRefGoogle Scholar
  46. 46.
    Y. Nambu, Phys. Lett. 26B, 626 (1968).Google Scholar
  47. 47.
    S. Coleman, “Secret Symmetry,” in Laws of Hadronic Matter, Proceedings of the 11th Course of the International School in Physics “Ettore Majorana,” A. Zichichi, ed. ( Academic, New York, 1975 ).Google Scholar
  48. 48.
    R. J. Furnstahl, R. J. Perry, and B. D. Serot, Phys. Rev. C40, 321 (1989).ADSGoogle Scholar
  49. 49.
    C. J. Horowitz and B. D. Serot, Phys. Lett. 109B, 341 (1982).Google Scholar
  50. 50.
    C. J. Horowitz and B. D. Serot, Nucl. Phys. A399, 529 (1983).CrossRefGoogle Scholar
  51. 51.
    R. Machleidt, K. Holinde, and Ch. Elster, Phys. Rep. 149, 1 (1987).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Brian D. Serot
    • 1
  1. 1.Physics Department and Nuclear Theory CenterIndiana UniversityBloomingtonUSA

Personalised recommendations