Hard Photons and Subthreshold Mesons from Nucleus-Nucleus Collisions

  • Eckart Grosse
Part of the NATO ASI Series book series (NSSB, volume 205)


The study of nucleus-nucleus collisions at an energy high enough to allow for an appreciable nuclear overlap is the only experimental means to obtain information about the properties of nuclear matter at a density clearly above the saturation density of heavy nuclei ρ o = 0.16 fm-3. Considering the lack of success of all attempts to reproduce ρ o and the nuclear matter binding energy per nucleon ɛ = -16 MeV in (non relativistic) self consistent calculations on the basis of realistic nucleon-nucleon potentials1), experimental information about the ρ-dependence of ɛ, i.e. the equation of state (eos), may help to solve this long-standing problem of nuclear physics. Additionally, such information is extremely valuable for astrophysics, as the stability of neutron stars as well as the dynamics of a supernova of type II are strongly depending2) on the nuclear eos. The density variations in nuclear ground states are very small and do not yield relevant information; but the EO-giant resonance (breathing mode) energies can be related to the compressibility Ko of nuclear matter which determines the eos near the minimum ρ o. A recent analysis3) of a series of new EO-energy determinations results in Ko = 300 MeV, a value which is larger than the 140 MeV used predominantly2) in astrophysical calculations.


Nuclear Matter Collision Zone Photon Production Projectile Energy Hard Photon 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Mahaux, this volumeGoogle Scholar
  2. 2.
    H.A. Bethe in: Unified Concepts of Many-Body Problems, p. 3, T.T.S. Kuo and J. Speth, Amsterdam 1987Google Scholar
  3. 3.
    M.M. Sharma, Phys. Rev. C38 (1988) 2562 and to be publishedGoogle Scholar
  4. 4.
    A.L. DePaoli, proceedings Hirschegg (1988)Google Scholar
  5. 5.
    E. Grosse, Europhys. Lett. 2 (1986) 9Google Scholar
  6. 6.
    G. Breitbach, submitted to Phys. Rev. Lett.Google Scholar
  7. 7.
    N. Hermann, Phys. Rev. Lett. 60 (1988) 1630Google Scholar
  8. 8.
    P. Grimm and E. Grosse, Progr. in Part, and Nucl. Phys. 15 (1985) 339Google Scholar
  9. 9.
    H. Nifenecker and J.A. Pinston, to be publ. in Reports on Progr. in PhysicsGoogle Scholar
  10. 10.
    K. Nakayama and G F. Bertsch, Phys. Rev. C34 (1986) 2190; K. Nakayama, to be published in Phys. Rev. CGoogle Scholar
  11. 11.
    V. Metag, proceedings St. Malo 1988, Nucl. Phys. A488 (1988) 483Google Scholar
  12. 12.
    T.S. Biro, Nucl. Phys. A475 (1987) 579Google Scholar
  13. 13.
    W. Bauer, MSUCL-672, to be publishedGoogle Scholar
  14. 14.
    R. Heuer, Z. Phys. A330 (1988) 315Google Scholar
  15. 15.
    N. Alamanos, Phys. Lett. 173B (1986) 392Google Scholar
  16. 16.
    H. Noll, Phys. Rev. Lett. 52 (1984) 1284 H. Heckwolf , Z. Phys. A315 (1984) 243Google Scholar
  17. 17.
    E. Grosse, Nucl. Phys. A447 (1985) 611; id., Varenna lectures 1987, to be publ.Google Scholar
  18. 18.
    T. Reposeur, thesis Paris 1989; T.D.S. Stanislaus, thesis Vancouver 1987Google Scholar
  19. 19.
    M. Tohyama, Nucl. Phys. A437 (1985) 739Google Scholar
  20. 20.
    G.F. Bertsch, MSUCL-644, to be publishedGoogle Scholar
  21. 21.
    J. Cugnon and M.C. Lemaire, Nucl. Phys. A489 (1988) 781Google Scholar
  22. 22.
    R. Stock, Phys. Reports 135 (1986) 259Google Scholar
  23. 23.
    B. Schurmann and W. Zwermann, Europhys. Lett. (1988)Google Scholar
  24. 24.
    J.B. Carroll, this volumeGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Eckart Grosse
    • 1
  1. 1.GSI DarmstadtDarmstadtGermany

Personalised recommendations