Pathogenesis of Dengue Haemorrhagic Fever: Current Perspectives

  • Tikki Pang
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 257)


Dengue viruses belong to the family Flaviviridae and the four recognized serotypes (dengue-1, dengue-2, dengue-3, dengue-4) cause a spectrum of disease ranging from an undif-ferentiated febrile illness to the severe, life-threatening dengue haemorrhagic fever/dengue shock syndrome (DHF/DSS). DHF/DSS remains as a major public health problems in various parts of Southeast Asia, the Pacific region and, more recently, the Caribbean. The disease syndromes pose special problems for health authorities because of their epidemic potential, the often high case-fatality rate and difficulties associated with treatment and prevention. As part of the overall effort at disease control and prevention, a comprehensive understanding of the pathogenesis of DHF/DSS is vital in the quest for more rational approaches to treatment and the design of appropriate and effective vaccines.


Dengue Virus Japanese Encephalitis Virus Dengue Haemorrhagic Fever Mouse Peritoneal Macrophage Japanese Encephalitis Virus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andrews, B.S., Theofilopoulos, A.N., Peters, C.J., Loskutoff, D.J., Brandt, W.E., Dixon, F.J. (1978). Replication of dengue and Junin viruses in cultured rabbit and human endothelial cells. Infect.Immun. 20 : 776–781.PubMedGoogle Scholar
  2. Barnes, W.J.S., Rosen, L. (1974). Fatal haemorrhagic disease and shock associated with primary dengue infection on a Pacific island. Am.J.Trop.Med.Hyg. 23 : 495–506.PubMedGoogle Scholar
  3. Bhamarapravati, N. (1981). Pathology and pathogenesis of DHF. in “Dengue Haemorrhagic Fever 1981” (S. Hotta, ed.), ICMR, Kobe, pp. 207–214.Google Scholar
  4. Bhamarapravati, N., Tuchinda, P., Boonyapaknavik, V. (1967). Pathology of Thailand haemorrhagic fever : A study of 100 autopsy cases. Ann.Trop.Med.Parasit. 61 : 500–510.PubMedGoogle Scholar
  5. Boonpucknavig, S., Bhamarapravati, N., Nimmannitya, S., Phalavadhtana, A., Siripont, J. (1976). Immunofluorescent staining of the surfaces of lymphocytes in suspension from patients with dengue haemorrhagic fever. Am.J.Pathol. 85 : 37–47.PubMedGoogle Scholar
  6. Burke, D.S., Schmaljohn, C.S., Dalrymple, J.M. (1985). Strains of Japanese encephalitis virus isolated from human brains have a highly conserved genotype compared to strains isolated from other natural hosts. Abstr.Ann.Meet.Am.Soc. Virol., Univ. New Mex., Albuquerque.Google Scholar
  7. CDC (Centers for Disease Control), Dengue Surveillance Summary, no. 26, September 1985, pp. 1–2Google Scholar
  8. Chaturvedi, U.C., Tandon, P., Mathur, A., Kumar, A. (1978). Host defense mechanisms against dengue virus infection in mice. J.Gen.Virol. 39 : 293:302.PubMedCrossRefGoogle Scholar
  9. Chaturvedi, U.C., Bhargava, A., Mathur, A. (1980). Production of cytotoxic factor in the spleen of dengue virus-infected mice. Immunology 40 : 653–658.Google Scholar
  10. Churdboonchart, V., Bhamarapravati, N., Futrakul, P. (1983). Crossed immunoelectrophoresis for the detection of split products of the third complement in dengue haemorrhagic fever. I. Observations in patient’s plasma. Am.J.Trop.Med. Hyg. 32 : 569–576.PubMedGoogle Scholar
  11. Eckels, K.H., Brandt, W.E., Harrison, V.R., McConn, J.M., Russell, P.K. (1976). Isolation of a temperature-sensitive dengue-2 virus under conditions suitable for vaccine development. Infect.Immun. 14 : 1221–1227.PubMedGoogle Scholar
  12. Edelman, R., Nimmannitya, S., Colman, R.W., Talamo, R.C., Top, F.H. (1975). Evaluation of the plasma kinin system in dengue haemorrhagic fever. J.Lab.Clin.Med. 86 : 410–421.PubMedGoogle Scholar
  13. Gubler, D.J., Suharyono, W., Sumarmo, Wulur, H., Jahja, E., Sulianti Saroso, J. (1979). Virological surveillance for dengue haemorrhagic fever in Indoneis using the mosquito inoculation technique. Bull. WHO 57 : 931–936.PubMedGoogle Scholar
  14. Guzman, M.G., Kouri, G., Morier, L., Soler, M., Fernandez, A. (1984). A study of fatal haemorrhagic dengue cases in Cuba. Bull.PAHO 18: 213–220.Google Scholar
  15. Guzman, M.G., Kouri, G., Bravo, J., Soler, M., Vasquez, S. (1985). Dengue haemorrhagic fever in Cuba, 1981. II. Study of patients clinically diagnosed with dengue haemorrhagic fever and dengue shock syndrome. Trans.Roy.Soc.Trop.Med. Hyg. 78 : 239–247.CrossRefGoogle Scholar
  16. Hahn, Y.S., Galler, R., Hunkapiller, T., Dalrymple, J.M., Strauss, J.H., Strauss, E.G. (1988). Nucleotide sequence of dengue 2 RNA and comparison of the encoded proteins with those of other flaviviruses. Virology 162 : 167–180.PubMedCrossRefGoogle Scholar
  17. Halstead, S.B. (1980). Immunologieal parameters of togavirus disease syndromes. In “The Togaviruses” (R.W. Schlesinger, ed.), Academic Press, New York, pp. 107–173.Google Scholar
  18. Halstead, S.B. (1981). The pathogenesis of dengue : Molecular epidemiology in infectious disease. Am.J.Epidemiol. 114 : 632–648.PubMedGoogle Scholar
  19. Halstead, S.B. (1982). Dengue : Haematologic aspects. Sem. Haematol. 19 : 116–131.Google Scholar
  20. Halstead, S.B. (1983). Pathogenesis of dengue : New knowledge depends upon epidemiological and clinical studies. In “Proceedings of the International Conference on Dengue/ Dengue Haemorrhagic Fever (T. Pang, R. Pathmanathan, eds.), University of Malaya, pp. 34–44.Google Scholar
  21. Halstead, S.B. (1984). Selective primary health care : Strategies for control of disease in the developing world. XI. Dengue. Rev.Infect.Dis. 6 : 251–264.PubMedCrossRefGoogle Scholar
  22. Halstead, S.B. (1988). Pathogenesis of dengue : Challenges to molecular biology. Science 239 : 476–481.PubMedCrossRefGoogle Scholar
  23. Halstead, S.B., Venkatesan, C.N., Gentry, M.K., Larsen, L.K. (1984). Heterogeneity of infection enhancement of dengue 2 strains by monoclonal antibodies. J.Immunol. 132 : 1529–1532.PubMedGoogle Scholar
  24. Harrison, V.R., Eckels, K.H., Sagartz, J.W., Russell, P.K. (1977). Virulence and immunogenicity of a temperature-sensitive dengue 2 virus in lower primates. Infect.Immun. 18 : 151–156.PubMedGoogle Scholar
  25. Heinz, F.X., Berger, R., Najdic, O., Knapp, W., Kunz, C. (1982). Monoclonal antibodies to the structural glycoprotein of tick-borne encephalitis virus. Infect.Immun. 37 : 869–874.PubMedGoogle Scholar
  26. Holland, J.J. (1984). Continuum of change in RNA virus genomes. In “Concepts in Viral Pathogenesis” (A.L. Notkins, M.B.A. Oldstone, eds.), Springer-Verlag, New York, pp. 137–143.CrossRefGoogle Scholar
  27. Holland, J.J., Spindler, V., Horodyski, F., Grabau, E., Nichol, S., vandePol, S. (1982). Rapid evolution of RNA genomes. Science 215 : 1577–1585.PubMedCrossRefGoogle Scholar
  28. Hotta, H., Hotta, S. (1982). Dengue virus multiplication in cultures of mouse peritoneal macrophages : Effects of macrophage activators. Microbiol.Immunol. 26 : 665–676.PubMedGoogle Scholar
  29. Hotta, H., Hotta, S., Homma, M. (1984). Effect of interferons on dengue virus multiplication in cultured monocytes/ macrophages. Biken J. 27 : 189–193.PubMedGoogle Scholar
  30. Igarashi, A. (1984). A hypothesis on the geographical distribution of arboviruses. Trop.Med. 26 : 173–180.Google Scholar
  31. Kurane, I., Hebblewaite, D., Brandt, W.E., Ennis, F.A. (1984). Lysis of dengue-infected cells by natural cell-mediated cytotoxicity and antibody-dependent cell-mediated cytotoxicity. J.Virol. 52 : 223–230.PubMedGoogle Scholar
  32. Kurane, I., Hebblewaite, D., Ennis, F.A. (1986). Characterization with monoclonal antibodies of human lymphocytes active in natural killing and antibody-dependent cell-mediated cytotoxicity of dengue virus-infected cells. Immunology 58 : 429–436.PubMedGoogle Scholar
  33. Mason, P.W., McAda, P.C., Mason, T.L., Fournier, M.J. (1987). Sequence of the dengue-l virus genome in the region encoding the three structural proteins and the major nonstructural protein NS1. Virology 161 : 262–267.PubMedCrossRefGoogle Scholar
  34. Mims, C.A., White, D.O. (1984). Viral Pathogenesis and Immunology. Blackwell Scientific Publications, Oxford.Google Scholar
  35. Monath, T.P. (1986). Pathobiology of flaviviruses. In “The Togaviruses and Flaviviruses” (S. and M. Schlesinger, eds), Plenum Press, New York, pp. 375–440.Google Scholar
  36. Nagarkatti, P.S., D’Souza, M.B., Rao, K.M. (1978). Use of sensitized spleen cells in capillary tube migration inhibition test to demonstrate cellular sensitization to dengue virus in mouse. J.Immunol.Meth. 23 : 241–348.CrossRefGoogle Scholar
  37. Norazizah Md. Taib, Chan, S.P., Rethwan, T., Pang, T., Lam, S.K. (1983). The 1982 dengue outbreak in Malaysia : The University Hospital experience. In “Proceedings of the International Conference on Dengue/Dengue Haemorrhagic Fever” (T.Pang, R. Pathmanathan, eds.), University of Malaya, pp. 88–94.Google Scholar
  38. Pang, T. (1983). Delayed-type hypersensitivity : Probable role in the pathogenesis of dengue haemorrhagic fever/dengue shock syndrome. Rev.Infect.Dis. 5 : 346–352.PubMedCrossRefGoogle Scholar
  39. Pang, T. (1987). Dengue-specific IgM and dengue haemorrhagic fever/shock. Lancet 1 : 988.PubMedCrossRefGoogle Scholar
  40. Pang, T., Wong, P.Y., Pathmanathan, R. (1982). Induction and characterization of delayed-type hypersensitivity to dengue virus in mice. J.Infect.Dis. 146 : 235–242.PubMedCrossRefGoogle Scholar
  41. Pang, T., Devi, S., Blanden, R.V., Lam, S.K. (1988). T cell-mediated cytotoxicity against dengue-infected target cells. Microbiol. Immunol. 32 (5), in press.Google Scholar
  42. Pavri, K.M., Prasad, S.R. (1980). T suppressor cells : Role in dengue haemorrhagic fever and dengue shock syndrome. Rev.Infect.Dis. 2 : 142–146.PubMedCrossRefGoogle Scholar
  43. Pavri, K.M., Swe Than, Ramamoorthy, C.L., Chodankar, V.P. (1979). Immunoglobulin E in dengue haemorrhagic fever (DHF) cases. Trans.Roy.Soc.Trop.Med.Hyg. 73 : 451–452.PubMedCrossRefGoogle Scholar
  44. Peiris, J.S.M., Porterfield, J.S. (1979). Antibody mediated enhancement of flavivirus replication in macrophage-like cell lines. Nature 282 : 509–511.PubMedCrossRefGoogle Scholar
  45. Repik, P.M., Dalrymple, J.M. , Brandt, W.E., McCown, J.M., Russell, P.K. (1983). RNA fingerprinting as a method for distinguishing dengue 1 virus strains. Am.J.Trop.Med.Hyg. 3 : 577–589.Google Scholar
  46. Rohde, J. (1978). Clinical management of severe dengue. Trop.Doct. 8 : 54–61.PubMedGoogle Scholar
  47. Rosen, L. (1977). The emperor—s-new clothes revisited, or reflections on the pathogenesis of dengue haemorrhagic fever. Am.J.Trop.Med.Hyg. 26 : 337–343.PubMedGoogle Scholar
  48. Russell, P.K., Brandt, W.E. (1973). Immunopathologic processes and viral antigens associated with sequential dengue virus infection. Persp.Virol. 7 : 263–277.Google Scholar
  49. Sahaphong, S., Riengrojpitak, S., Bhamarapravati, N., Chirachariyavej, T. (1980). Electron microscopic study of the vascular endothelial cell in dengue haemorrhagic fever. S.E.Asian J.Trop.Med.Publ.Hlth. 11 : 194–204.Google Scholar
  50. Sangkawibha, N., Rojanasuphot, S., Ahandrik, S. (1984). Risk factors in dengue shock syndrome : A prospective epidemiologic study in Rayong, Thailand. I. The 1980 outbreak. Am.J.Epidemiol. 120 : 653–669.PubMedGoogle Scholar
  51. Schlesinger, R.W. (1980). Virus-host interactions in natural and experimental infections with alphaviruses and flaviviruses. In “The Togaviruses” (R.W. Schlesinger, ed.), Academic Press, New York, pp. 83–106.Google Scholar
  52. Scott, R.M., Nimmannitya, S., Bancroft, W.H., Mansuwan, P. (1976). Shock syndrome in primary dengue infection. Am.J. trop.Med.Hyg. 25 : 866–874.PubMedGoogle Scholar
  53. Scott, R.M., Nisalak, A., Cheamudon, U., Seridhoranakul, S., Nimmannitya, S. (1980). Isolation of dengue viruses from peripheral blood leukocytes of patients with haemorrhagic fever. J.Infect.Dis. 141 : 1–6.PubMedCrossRefGoogle Scholar
  54. Stephenson, J.R., Lee, J.M. , Wilton-Smith, F.D. (1984). Antigenic variation among members of the tick-borne encephalitis complex. J.Gen.Virol. 65 : 81–89.PubMedCrossRefGoogle Scholar
  55. Suvatte, V., Malasit, P., Sarasombath, S., Wasi, C. (1988). Immunopathogenesis of dengue haemorrhagic fever/dengue shock syndrome. In Proceedings of the First International Congress of Tropical Paediatrics, in press.Google Scholar
  56. Tandon, P., Chaturvedi, U.C., Mathur, A. (1979). Dengue virus induced thymus-derived suppressor cells in the spleens of mice. Immunology 38 : 653–658.PubMedGoogle Scholar
  57. Trent, D.W., Grant, J.A., Rosen, L., Monath, T.P. (1983). Genetic varaiation among dengue 2 viruses of different geographic origin. Virology 128 : 271–286.PubMedCrossRefGoogle Scholar
  58. Tuchinda, M., Dhorranintra, B., Tuchinda, P. (1977). Histamine content in 24-hour urine in patients with dengue haemorrhagic fever. S.E.Asian J.Trop.Med.Pub.Hlth. 8 : 80–83.Google Scholar
  59. Vithanomsat, S., Wasi, C., Harinasuta, C., Thongcharoen, P. (1984). The effect of interferon on flaviviruses in vitro : A preliminary study. S.E.Asian J.Trop.Med.Publ.Hlth. 15 : 27–31.Google Scholar
  60. Wiharta, A.S., Hotta, H., Hotta, S., Matsumura, T., Sujudi, Tsuji, M. (1985). Increased multiplication of dengue virus in mouse peritoneal macrophage cultures by treatment with extracts of Ascaris-Parascaris parasites. Microbiol. Immunol. 29 : 337–348.PubMedGoogle Scholar
  61. Wong, P.Y., Devi, S., McKenzie, I.F.C., Yap, K.L., Pang, T. (1984). Induction and Ly phenotype of suppressor T cells in mice during primary infection with dengue virus. Immunology 51 : 51–56.PubMedGoogle Scholar
  62. World Health Organization (WHO) (1985a). Arthropod-borne and rodent-borne viral diseases. Tech.Rep.Ser. no. 719, WHO, Geneva.Google Scholar
  63. World Health Organization (WHO) (1985b). Viral haeomorrhagic fevers. Tech.Rep.Ser. no. 721, WHO, Geneva.Google Scholar
  64. Zhao, B., Mackow, E., Buckler-White, A., Markoff, L., Chanock, R.M., Lai, C.J., Makino Y. (1986). Cloning full-length dengue type 4 viral DNA sequences : Analysis of genes coding for structural proteins. Virology 155 : 77–88.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Tikki Pang
    • 1
  1. 1.Department of Medical MicrobiologyUniversity of MalayaKuala LumpurMalaysia

Personalised recommendations