Advertisement

The Extended Nature of Pointlike Defects in Silicon

  • G. F. Cerofolini
Part of the NATO ASI Series book series (NSSB, volume 202)

Abstract

The problem of the localized or extended nature of pointlike defects in silicon is considered. Evidence from different areas (solid solubility of substitutional impurities, mobility in Mott — Anderson Si:As metal, and supershallow levels in p-type silicon) suggests that each atomic perturbation of the crystal periodicity is associated with a cloud of displaced atoms involving about 103 lattice sites.

Keywords

Solid Solubility Rutherford Backscattering Spectrometry Impurity Band Substitutional Impurity Displace Atom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. R Cerofolini and L. Meda, Physical Chemistry of in and on Silicon, Springer-Verlag, Berlin (1988)Google Scholar
  2. 2.
    M. Lannoo and J. Bourgouin, Point Defects in Semiconductors I, Springer-Verlag, Berlin (1981)CrossRefGoogle Scholar
  3. 3.
    W. Zulehner and D. Huber, Crystals 8, 1 (1982)CrossRefGoogle Scholar
  4. 4.
    G. Das, Mat. Res. Soc. Symp. Proc 14, 87 (1983)CrossRefGoogle Scholar
  5. 5.
    J. Van Vechten, Phys. Rev. B 10, 1482 (1974)ADSGoogle Scholar
  6. 6.
    J. Van Vechten, Proc. 13th Intl. Conf. Defects in Semiconductors, The Metallurgical Society, Warrendale PA (1985) p. 293Google Scholar
  7. 7.
    R. Car, P. J. Kelly, S. Oshiyama and S. T. Pantelides, Phys. Rev. Lett. 52, 1854 (1984)ADSCrossRefGoogle Scholar
  8. 8.
    E. P. Donovan, F. Spaepen, D. Turnbull, J. M. Poate and D. C. Jacobson, Appl. Phys. Lett. 42, 698 (1983)ADSCrossRefGoogle Scholar
  9. 9.
    M. Servidori, Nucl. Instrum. Meth. B 19/20, 443 (1987)Google Scholar
  10. 10.
    L. Meda, G. F. Cerofolini, R. Dierckx, G. Mercurio, M. Servidori, F. Cembali, M. Anderte, R. Canteri, G. Ottaviani, C. Claeys and J. Vanhellemont, Nucl. Instrum. Meth. B, in pressGoogle Scholar
  11. 11.
    G. F. Cerofolini, L. Meda, C. Volpones, R. Dierckx, G. Mercurio, M. Anderte, R. Canteri, F. Cembali, R. Fabbri and M. Servidori, Nucl. Instrum. Meth. B, in pressGoogle Scholar
  12. 12.
    P. Cappelletti, G. F. Cerofolini and G. U. Pignatel, Phil. Mag. A 46, 863 (1982)ADSCrossRefGoogle Scholar
  13. 13.
    P. Cappelletti, G. F. Cerofolini and G. U. Pignatel, Phil. Mag. A 47, 623 (1983)ADSCrossRefGoogle Scholar
  14. 14.
    G. F. Cerofolini, Adv. Coll. Interface Sci. 19, 103 (1983)CrossRefGoogle Scholar
  15. 15.
    A. A. Maradudin, E. W. Montroll and G. H. Weiss, The Theory of Lattice Dynamics in the Harmonic Approximation, Pergamon Press, New York, NY (1963)Google Scholar
  16. 16.
    A. Baldereschi and J. J. Hopfield, Phys. Rev. Lett. 28, 171 (1972)ADSCrossRefGoogle Scholar
  17. 17.
    N. F. Mott, Intl. Rev. Phys. Chem. 4, 1 (1985)CrossRefGoogle Scholar
  18. 18.
    G. F. Cerofolini, L. Meda, E. Mazzega, M. Michelini and G. Ottaviani, unpublishedGoogle Scholar
  19. 19.
    P. F. Newman and D. F. Holcomb, Phys. Rev. B 28, 638 (1983)ADSCrossRefGoogle Scholar
  20. 20.
    J. M. Ziman, Electrons and Phonons, Clarendon Press, Oxford (1963)Google Scholar
  21. 21.
    G. F. Cerofolini and R. Bez, J. Appl. Phys. 61, 1435 (1987)ADSCrossRefGoogle Scholar
  22. 22.
    G. F. Cerofolini, Phil. Mag. B 47, 393 (1983)Google Scholar
  23. 23.
    R. Clausius, Ann. d. Phys. 125, 353 (1865)ADSCrossRefGoogle Scholar
  24. 24.
    T. Stace, Nature 331, 116 (1988)ADSCrossRefGoogle Scholar
  25. 25.
    G. F. Cerofolini, L. Meda and C. Volpones, J. Appl. Phys. 63, 4911 (1988)ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • G. F. Cerofolini
    • 1
  1. 1.EniChemMilano MIItaly

Personalised recommendations