Skip to main content

Effect of Impurity Segregation on the Electrical Properties of Grain Boundaries in Polycrystalline Silicon

  • Chapter

Part of the book series: NATO ASI Series ((NSSB,volume 202))

Abstract

Solute segregation at (or near) grain boundaries (GB) of polycrystalline solids has been widely observed and it is recognized1 to be driven by an electrical field (in the case of charged species) or by an elastic-strain field at inherently distorted GB regions, in close similarity with the case of dislocations, where elastic strain is known to produce the so called “Cottrell atmosphere” or a solute impurity cloud2.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. M. F. Yan, R. M. Cannon, H. K. Bowen, Space charge contributions to solute segregation near grain boundaries, in: “Grain boundaries in semiconductors”, G. E. Pike, C. H. Seager, H. J. Leamy, eds., North Holland, New York (1982)

    Google Scholar 

  2. R. W. Cahn, “Physical Metallurgy”, North Holland, Amsterdam (1970).

    Google Scholar 

  3. M. O. Cower, T. O. Sedwick, Chemical vapour deposited polycrystalline silicon, J. Electrochem. Soc. 119:1565 (1972)

    Article  Google Scholar 

  4. A. L. Fripp, L. H. Slack, Resistivity doped polycrystalline silicon J. Electrochem. Soc. 120:146 (1973)

    Article  Google Scholar 

  5. M. M. Mandurah, K. C. Saraswat, C. R. Helms, Dopant segregation in polycrystalline silicon, J. Appl. Phys. 51:5755 (1980)

    Article  ADS  Google Scholar 

  6. H. J. Queisser, Electrical properties of dislocations and boundaries in semiconductors, in: “Defects in Semiconductors II”, S. Manharajan, J. W. Corbett, ed., North Holland, New York (1983)

    Google Scholar 

  7. L. L. Kazmerski, P. E. Russel, Chemical and electrical characterization of polycrystalline semiconductors, J. Phys. (Paris) 431–172 (1982)

    Google Scholar 

  8. L. L. Kazmerski, P. E. Russel, P. J. Ireland, C. H. Herrington, J. R. Dick, R. J. Matson, K. M. Jones, Grain boundaries in silicon solar cells, J. Vac. Sci. Techn. A2:1120 (1984)

    ADS  Google Scholar 

  9. L. L. Kazmerski, Silicon grain boundaries, correlated chemical and electrooptical characterization, Proc. 17th IEEE Photovoltaic Specialist Conference (1984)

    Google Scholar 

  10. L. L. Kazmerski, Polycrystalline silicon: impurity incorporation and passivation, Proc. 6th E. C. Photovoltaic Solar Energy Conf., D. Reidel, ed., Doordrecht (1985)

    Google Scholar 

  11. L. L. Kazmerski, Scanning tunneling microscope and complementary microchemical investigations of hydrogen and shallow acceptors at silicon grain boundaries, Proc. 8th E. C. Photovoltaic Solar Energy Conf., D. Reidel, ed., Doordrecht (1988)

    Google Scholar 

  12. L. L. Kazmerski, Atomic level imaging and microanalysis of GB in polycrystalline semiconductors, Proc. Symp. Polycrystalline Semiconductors (Polyse), Springer Verlag, Berlin (in press)

    Google Scholar 

  13. C. H. Seager, T. G. Castner, Zero bias resistance of GB in neutron doped polycrystalline silicon, J. Appl. Phys. 49:3879 (1978)

    Article  ADS  Google Scholar 

  14. J. X. W. Seto, The electrical properties of polycrystalline silicon films, J. Appl. Phys. 46:5247 (1975)

    Article  ADS  Google Scholar 

  15. G. Baccarani, B. Ricco’, G. Spadini, Transport properties of polycrystalline silicon films, J. Appl. Phys. 49:5568 (1978)

    Article  ADS  Google Scholar 

  16. N. F. Mott, E. A. Davis, “Electronic Processes in non crystalline solids” Clarendon Press, Oxford (1971)

    Google Scholar 

  17. C. Kittel, H. Kroemer, “Thermal Physics” W. H. Freeman and Co. S. Francisco (1980)

    Google Scholar 

  18. Y. S. Kim, C. I. Drowley, C. Hu, A new method of measuring diffusion length and surface recombination velocity, Proc. 14th IEEE Photovoltaic Specialist Conference (1980)

    Google Scholar 

  19. L. Passari, E. Susi, Recombination mechanism and doping density in silicon, J. Appl. Phys. 54:3935 (1983)

    Article  ADS  Google Scholar 

  20. G. F. Cerofolini, L. Meda “Physical chemistry of silicon” Springer Verlag, Berlin (1989)

    Book  Google Scholar 

  21. S. Pizzini, L. Braicovich, L. Calliari, M. Gasparini, C. Mari, F. Redaelli, M. Sancrotti, Segregation of impurities at GB and other compositional inhomogeneities in cast silicon ingots, Proc. 4th E. C. Photovoltaic Solar Energy Conf., D. Reidel, ed., Doordrecht (1982)

    Google Scholar 

  22. P. Cagnoni, Interaction between impurities and extended defects in polycrystalline silicon (in italian), Thesis University of Milan, Dept. Physics (1987)

    Google Scholar 

  23. R. C. Newman, “Infrared studies of crystal defects”, Taylor & Francis, London (1973)

    Google Scholar 

  24. S. Pizzini, F. Borsani, A. Sandrinelli, D. Narducci, M. Anderle, R. Canteri, On the influence of the Cottrell atmosphere on the recombination losses at GB in polycrystalline silicon, Proc. Symp. Polycrystalline Semiconductors (Polyse), Springer Verlag, Berlin (in press)

    Google Scholar 

  25. S. Pizzini, P. Cagnoni, A. Sandrinelli, M. Anderle, R. Canteri, Grain boundary segregation of oxygen and carbon in polycrystalline silicon, Appl. Phys. Lett. 51:676 (1987)

    Article  ADS  Google Scholar 

  26. T. Y. Tan, Exigent volume of precipitation and formation of oxygen precipitates in silicon, in: “Oxygen, carbon, hydrogen and nitrogen in crystalline silicon”, MRS Symposia Proceedings, Vol. 59, Materials Research Society, Pittsburgh (1986)

    Google Scholar 

  27. R. C. Newman, Carbon in crystalline silicon, ibidem

    Google Scholar 

  28. A. Borghesi, M. Geddo, G. Guizzetti, S. Pizzini, D. Narducci, A. Sandrinelli, A. Zachman, IR microcharacterization of GB in polycrystalline silicon, Solid St. Comm. (1989) (in press)

    Google Scholar 

  29. S. J. Pearton, Hydrogen in crystalline silicon, in: “Oxygen, carbon, hydrogen and nitrogen in crystalline silicon”, MRS Symposia Proceedings, Vol. 59, Materials Research Society, Pittsburgh (1986)

    Google Scholar 

  30. A. Barhadi, H. Amzil, J. C. Muller, P. Siffert, Thermal activation and hydrogen passivation of grain boundaries, Proc. Symp. Polycrystalline Semiconductors (Polyse), Springer Verlag, Berlin (in press)

    Google Scholar 

  31. G. Donolato, Theory of beam induced current characterization of GB in polycrystalline solar cells, J. Appl. Phys. 54:1314 (1983)

    Article  ADS  Google Scholar 

  32. S. Pizzini, A. Sandrinelli, M. Beghi, D. Narducci, F. Allegretti, S. Torchio, G. Fabbri, G. P. Ottaviani, F. Demartin, A. Fusi, Influence of extended defects and native impurities on the electrical properties of polycrystalline silicon, J. Electrochem. Soc. 135:155 (1988)

    Article  Google Scholar 

  33. F. Borsani, Segregation phenomena and electrical activity of GB in silicon (in Italian), Thesis University of Milan, Dept. Physics (1988)

    Google Scholar 

  34. S. Martinuzzi, Activation and Passivation of recombination activity of GB in polycrystalline semiconductors, Proc. Symp. Polycrystalline Semiconductors (Polyse), Springer Verlag (in press)

    Google Scholar 

  35. A. Poggi, E. Susi, Effect of high carbon content on denuded zone stability in intrinsic gettering processes, Proc. 2nd GADEST Conference, Garzau (DDR) 119 (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Pizzini, S., Borsani, F., Sandrinelli, A., Narducci, D., Allegretti, F. (1989). Effect of Impurity Segregation on the Electrical Properties of Grain Boundaries in Polycrystalline Silicon. In: Benedek, G., Cavallini, A., Schröter, W. (eds) Point and Extended Defects in Semiconductors. NATO ASI Series, vol 202. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5709-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5709-4_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5711-7

  • Online ISBN: 978-1-4684-5709-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics