Effect of Impurity Segregation on the Electrical Properties of Grain Boundaries in Polycrystalline Silicon

  • S. Pizzini
  • F. Borsani
  • A. Sandrinelli
  • D. Narducci
  • F. Allegretti
Part of the NATO ASI Series book series (NSSB, volume 202)

Abstract

Solute segregation at (or near) grain boundaries (GB) of polycrystalline solids has been widely observed and it is recognized1 to be driven by an electrical field (in the case of charged species) or by an elastic-strain field at inherently distorted GB regions, in close similarity with the case of dislocations, where elastic strain is known to produce the so called “Cottrell atmosphere” or a solute impurity cloud2.

Keywords

Hydroxyl Silic Recombination Boron FTIR Spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. 1.
    M. F. Yan, R. M. Cannon, H. K. Bowen, Space charge contributions to solute segregation near grain boundaries, in: “Grain boundaries in semiconductors”, G. E. Pike, C. H. Seager, H. J. Leamy, eds., North Holland, New York (1982)Google Scholar
  2. 2.
    R. W. Cahn, “Physical Metallurgy”, North Holland, Amsterdam (1970).Google Scholar
  3. 3.
    M. O. Cower, T. O. Sedwick, Chemical vapour deposited polycrystalline silicon, J. Electrochem. Soc. 119:1565 (1972)CrossRefGoogle Scholar
  4. 4.
    A. L. Fripp, L. H. Slack, Resistivity doped polycrystalline silicon J. Electrochem. Soc. 120:146 (1973)CrossRefGoogle Scholar
  5. 5.
    M. M. Mandurah, K. C. Saraswat, C. R. Helms, Dopant segregation in polycrystalline silicon, J. Appl. Phys. 51:5755 (1980)ADSCrossRefGoogle Scholar
  6. 6.
    H. J. Queisser, Electrical properties of dislocations and boundaries in semiconductors, in: “Defects in Semiconductors II”, S. Manharajan, J. W. Corbett, ed., North Holland, New York (1983)Google Scholar
  7. 7.
    L. L. Kazmerski, P. E. Russel, Chemical and electrical characterization of polycrystalline semiconductors, J. Phys. (Paris) 431–172 (1982)Google Scholar
  8. 8.
    L. L. Kazmerski, P. E. Russel, P. J. Ireland, C. H. Herrington, J. R. Dick, R. J. Matson, K. M. Jones, Grain boundaries in silicon solar cells, J. Vac. Sci. Techn. A2:1120 (1984)ADSGoogle Scholar
  9. 9.
    L. L. Kazmerski, Silicon grain boundaries, correlated chemical and electrooptical characterization, Proc. 17th IEEE Photovoltaic Specialist Conference (1984)Google Scholar
  10. 10.
    L. L. Kazmerski, Polycrystalline silicon: impurity incorporation and passivation, Proc. 6th E. C. Photovoltaic Solar Energy Conf., D. Reidel, ed., Doordrecht (1985)Google Scholar
  11. 11.
    L. L. Kazmerski, Scanning tunneling microscope and complementary microchemical investigations of hydrogen and shallow acceptors at silicon grain boundaries, Proc. 8th E. C. Photovoltaic Solar Energy Conf., D. Reidel, ed., Doordrecht (1988)Google Scholar
  12. 12.
    L. L. Kazmerski, Atomic level imaging and microanalysis of GB in polycrystalline semiconductors, Proc. Symp. Polycrystalline Semiconductors (Polyse), Springer Verlag, Berlin (in press)Google Scholar
  13. 13.
    C. H. Seager, T. G. Castner, Zero bias resistance of GB in neutron doped polycrystalline silicon, J. Appl. Phys. 49:3879 (1978)ADSCrossRefGoogle Scholar
  14. 14.
    J. X. W. Seto, The electrical properties of polycrystalline silicon films, J. Appl. Phys. 46:5247 (1975)ADSCrossRefGoogle Scholar
  15. 15.
    G. Baccarani, B. Ricco’, G. Spadini, Transport properties of polycrystalline silicon films, J. Appl. Phys. 49:5568 (1978)ADSCrossRefGoogle Scholar
  16. 16.
    N. F. Mott, E. A. Davis, “Electronic Processes in non crystalline solids” Clarendon Press, Oxford (1971)Google Scholar
  17. 17.
    C. Kittel, H. Kroemer, “Thermal Physics” W. H. Freeman and Co. S. Francisco (1980)Google Scholar
  18. 18.
    Y. S. Kim, C. I. Drowley, C. Hu, A new method of measuring diffusion length and surface recombination velocity, Proc. 14th IEEE Photovoltaic Specialist Conference (1980)Google Scholar
  19. 19.
    L. Passari, E. Susi, Recombination mechanism and doping density in silicon, J. Appl. Phys. 54:3935 (1983)ADSCrossRefGoogle Scholar
  20. 20.
    G. F. Cerofolini, L. Meda “Physical chemistry of silicon” Springer Verlag, Berlin (1989)CrossRefGoogle Scholar
  21. 21.
    S. Pizzini, L. Braicovich, L. Calliari, M. Gasparini, C. Mari, F. Redaelli, M. Sancrotti, Segregation of impurities at GB and other compositional inhomogeneities in cast silicon ingots, Proc. 4th E. C. Photovoltaic Solar Energy Conf., D. Reidel, ed., Doordrecht (1982)Google Scholar
  22. 22.
    P. Cagnoni, Interaction between impurities and extended defects in polycrystalline silicon (in italian), Thesis University of Milan, Dept. Physics (1987)Google Scholar
  23. 23.
    R. C. Newman, “Infrared studies of crystal defects”, Taylor & Francis, London (1973)Google Scholar
  24. 24.
    S. Pizzini, F. Borsani, A. Sandrinelli, D. Narducci, M. Anderle, R. Canteri, On the influence of the Cottrell atmosphere on the recombination losses at GB in polycrystalline silicon, Proc. Symp. Polycrystalline Semiconductors (Polyse), Springer Verlag, Berlin (in press)Google Scholar
  25. 25.
    S. Pizzini, P. Cagnoni, A. Sandrinelli, M. Anderle, R. Canteri, Grain boundary segregation of oxygen and carbon in polycrystalline silicon, Appl. Phys. Lett. 51:676 (1987)ADSCrossRefGoogle Scholar
  26. 26.
    T. Y. Tan, Exigent volume of precipitation and formation of oxygen precipitates in silicon, in: “Oxygen, carbon, hydrogen and nitrogen in crystalline silicon”, MRS Symposia Proceedings, Vol. 59, Materials Research Society, Pittsburgh (1986)Google Scholar
  27. 27.
    R. C. Newman, Carbon in crystalline silicon, ibidemGoogle Scholar
  28. 28.
    A. Borghesi, M. Geddo, G. Guizzetti, S. Pizzini, D. Narducci, A. Sandrinelli, A. Zachman, IR microcharacterization of GB in polycrystalline silicon, Solid St. Comm. (1989) (in press)Google Scholar
  29. 29.
    S. J. Pearton, Hydrogen in crystalline silicon, in: “Oxygen, carbon, hydrogen and nitrogen in crystalline silicon”, MRS Symposia Proceedings, Vol. 59, Materials Research Society, Pittsburgh (1986)Google Scholar
  30. 30.
    A. Barhadi, H. Amzil, J. C. Muller, P. Siffert, Thermal activation and hydrogen passivation of grain boundaries, Proc. Symp. Polycrystalline Semiconductors (Polyse), Springer Verlag, Berlin (in press)Google Scholar
  31. 31.
    G. Donolato, Theory of beam induced current characterization of GB in polycrystalline solar cells, J. Appl. Phys. 54:1314 (1983)ADSCrossRefGoogle Scholar
  32. 32.
    S. Pizzini, A. Sandrinelli, M. Beghi, D. Narducci, F. Allegretti, S. Torchio, G. Fabbri, G. P. Ottaviani, F. Demartin, A. Fusi, Influence of extended defects and native impurities on the electrical properties of polycrystalline silicon, J. Electrochem. Soc. 135:155 (1988)CrossRefGoogle Scholar
  33. 33.
    F. Borsani, Segregation phenomena and electrical activity of GB in silicon (in Italian), Thesis University of Milan, Dept. Physics (1988)Google Scholar
  34. 34.
    S. Martinuzzi, Activation and Passivation of recombination activity of GB in polycrystalline semiconductors, Proc. Symp. Polycrystalline Semiconductors (Polyse), Springer Verlag (in press)Google Scholar
  35. 35.
    A. Poggi, E. Susi, Effect of high carbon content on denuded zone stability in intrinsic gettering processes, Proc. 2nd GADEST Conference, Garzau (DDR) 119 (1987)Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • S. Pizzini
    • 1
  • F. Borsani
    • 1
  • A. Sandrinelli
    • 1
  • D. Narducci
    • 1
  • F. Allegretti
    • 2
  1. 1.Dipartimento di Chimica Fisica ed ElettrochimicaMilanoItaly
  2. 2.INFN, Sezione di RomaRomaItaly

Personalised recommendations