Gettering Mechanisms in Silicon

  • W. Schröeter
  • R. Kuehnapfel
Part of the NATO ASI Series book series (NSSB, volume 202)


Gettering in silicon is a well established procedure by which metallic impurities are concentrated within a predetermined part of the specimen. For example, in phosphorous diffusion gettering (PDG) the gettering part is a very thin silicon layer at the Si/PSG-interface (PSG: amorphous phosphorsilicate glass [1]). This layer becomes (1) highly doped by the in-diffusion of phosphorous up to the maximum solubility (920°C: 3 · 1020 cm-3), and (2) supersaturated with silicon self-interstitials by injection from the advancing Si/PSG-interface (see fig. 1). In its initial state the specimen has metallic impurities more or less homogenously distributed on lattice or interstitial sites, in pairs with the dopant or in particles. PDG changes this distribution into a highly inhomogenous one with the impurities concentrated within a layer of a few thousand Angstrom width.


Deep Level Transient Spectroscopy Quadrupole Doublet Metallic Impurity High Resolution Electron Microscopy Silicide Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Solmi S., Alotti G., Nobili D., and Negrini P., J. Electrochem. Soc. 123, 654 (76)Google Scholar
  2. [2]
    Shockley W., and Moll J., Phys. Rev. 119, 1480, (60)Google Scholar
  3. [3]
    Weber, E. R., Appl. Phys. A30, 1 (83)Google Scholar
  4. [4]
    Gilles D., and Utzig J., Defects in Semiconductors, Budapest 1988, to be publishedGoogle Scholar
  5. [5]
    Goesele U., Frank W., and Seeger A., Appl. Phys. 23, 361 (80)Google Scholar
  6. [6]
    Ueda O., Nauka K., Lagowski J., and Gatos H. C. in: Defects in Semiconductors 1986, ed. by H. J. von Barderleben, Material Science Forum 10-12, 145 (86)Google Scholar
  7. [7]
    Graff K., Hefner H. A., and Hennerici W., J. Electrochem. Soc. 135, 952 (88)Google Scholar
  8. [8]
    Kuehnapfel R., Schroeter W., and Gilles D. in: Defects in Semicondcutors 1986, ed. by H. J. von Bardeleben, Material Science Forum 10-12, 151 (86)Google Scholar
  9. [9]
    Gilles D., Thesis Goettingen 1987, to be publishedGoogle Scholar
  10. [10]
    Seibt M., and Graff K., J. Appl. Phys. 63, 4444 (88)Google Scholar
  11. [11]
    Lescronier D., Paugham J., Pelous G., Richou F., and Salvi M., J. Appl. Phys. 52, 5090 (81)Google Scholar
  12. [12]
    Bronner G. B., and Plummer J. D., MRS Proc. 36, 49 (85), and J. Appl. Phys. 61, 5286 (87)Google Scholar
  13. [13]
    Ourmazd A., MRS Proc. 59, 331 (86)Google Scholar
  14. [14]
    Falster R., Appl. Phys. Lett. 46, 737 (85)Google Scholar
  15. [15]
    Polignano M. L., and Gerofolini G. F., J. Appl. Phys. 64, 869 (88)Google Scholar
  16. [16]
    Chou S. L., abd Gibbons J. F., J. Appl. Phys. 46, 1197 (75)Google Scholar
  17. [17]
    Tseng W. F., Koji T., Mayer J. W., and Seidel T. E., J. Appl. Phys. 33, 442 (78)Google Scholar
  18. [18]
    Ourmazd A., and Schroeter W., Appl. Phys. Lett. 45, 781 (84)Google Scholar
  19. [19]
    Negrini P., Nobili D., and Solmi S., J. Electrochem. Soc. 122, 1254 (75)Google Scholar
  20. [20]
    Bourret A., and Schroeter W., Ultramicrsocopy 14, 97 (84)Google Scholar
  21. [21]
    Ourmazd A., and Schroeter W., MRS Proc. 36, 25 (85)Google Scholar
  22. [22]
    Shaikh A. A., Schroeter W., and Bergholz W., J. Appl. Phys. 58, 2519 (85)Google Scholar
  23. [23]
    Utzig J., J. Appl. Phys. 64, 3629 (88)Google Scholar
  24. [24]
    Gilles D., and Schroeter W., to be publishedGoogle Scholar
  25. [25]
    Gilles D., and Schroeter W. in: Defects in Semiconductors 1986, ed. by H. J. von Bardeleben, Material Science Forum 10-12, 169 (86)Google Scholar
  26. [26]
    Kuehnapfel R., and Schroeter W., to be publishedGoogle Scholar
  27. [27]
    Martin G., Phil. Mag. A38, 131 (78)Google Scholar
  28. [28]
    Seibt M., and Schroeter W., Phil. Mag. B in printGoogle Scholar
  29. [29]
    Bene, A., J. Appl. Phys. 61, 1826 (87)Google Scholar
  30. [30]
    Baumann F., and Schroeter W., Phil. Mag. Lett. 57, 75 (88)Google Scholar
  31. [31]
    Liehr M., Bronner G. B., and Lewis J. E., Appl. Phys. Lett. 52, 1892 (88)Google Scholar
  32. [32]
    Rubloff G. W., Hoffmann K., Liehr M., and Young D. R., Phys. Rev. Lett. 58, 2379 (87)Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • W. Schröeter
    • 1
  • R. Kuehnapfel
    • 1
  1. 1.IV. Physikalisches Institut and Sonderforschungsbereich 126 Goettingen/ClausthalD-34 GoettingenWest Germany

Personalised recommendations