Advertisement

Interaction of Impurities with Dislocations in Semiconductors

  • Koji Sumino
Part of the NATO ASI Series book series (NSSB, volume 202)

Abstract

Interactions of impurities with dislocations give rise to a variety of interesting phenomena in semiconductors worth clarifying from both fundamental and practical viewpoints. The distribution of impurities around a dislocation is usually different from that in the absence of the dislocation. This effect has long been known as the formation of the Cottrell atmosphere in the field of metal physics. In the device production technology the technique of intrinsic or extrinsic gettering of impurities from device-active regions is now widely used. The impurity-dislocation interactions play a central role in this technique. Nevertheless, the relation between the formation of the Cottrell atmosphere and the impurity gettering is not necessarily correctly understood in many papers so far published in the field of electronic materials. Incorrect descriptions are often seen in literature. The inhomogeneity in the impurity distribution caused by dislocations results in the inhomogeneities in the electrical and optical properties within the crystal if the impurities are the agents that determine such properties of the crystal. Understanding of the nature of impurity-dislocation interaction is essential in establishing the technology to produce electronic devices of high quality.

Keywords

Critical Stress Impurity Atom Screw Dislocation Dislocation Core Impurity Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Stimino, Defects and Properties of Semiconductors: Defect Engineering, J. Chikawa, K. Sumino and K. Wada, ed., KTK Scientific Publishers, Tokyo (1987) p. 227.Google Scholar
  2. 2.
    K. Sumino, Oyo Buturi, 56, 860 (1987).Google Scholar
  3. 3.
    K. Sumino, Proc. 1st International Autumn School on Gettering and Defect Engineering in the Semiconductor Technology, H. Richter, ed., Academy of Sciences of the GDR, Frankfurt (Oder) (1985) p. 41.Google Scholar
  4. 4.
    K. Sumino, Proc. 2nd International Autumn School on Gettering and Defect Engineering in the Semiconductor Technology, H. Richter, ed., Academy of Sciences of the GDR, Frankfurt (Oder) (1987) p. 218.Google Scholar
  5. 5.
    K. Sumino, Defects in Semiconductors E: Materials Research Society Symposia Proceedings 14, S. Mahajan and J. W. Corbett, ed., North-Holland, New York/ Amsterdam/Oxford (1983) p. 409.Google Scholar
  6. 6.
    J. P. Hirth and J. Lothe, Theory of Dislocations, John Wiley & Sons, New York (1982) p. 497.Google Scholar
  7. 7.
    H. Ehrenreich and J. P. Hirth, Appl. Phys. Lett. 47, 668 (1985).ADSCrossRefGoogle Scholar
  8. 8.
    M. Koguchi, I. Yonenaga and K. Sumino, Jpn. J. Appl. Phys. 21, L411 (1982).ADSCrossRefGoogle Scholar
  9. 9.
    I. Yonenaga and K. Sumino, Proc. Yamada Conf. IX on Dislocations in Solids, H. Suzuki, T. Ninomiya, K. Sumino and S. Takeuchi, ed., Univ. Tokyo Press, Tokyo (1985) p. 385.Google Scholar
  10. 10.
    Y. Miyamura and K. Sumino, to be published.Google Scholar
  11. 11.
    S. Miyazawa, T. Honda, Y. Ishii and S. Ishida, Appl. Phys. Lett. 44, 410 (1984).ADSCrossRefGoogle Scholar
  12. 12.
    T. Takebe, S. Murai, K. Tada and S. Akai, Inst. Phys. Conf. Ser. No. 79, 283 (1985).Google Scholar
  13. 13.
    T. Sekiguchi and K. Sumino, Jpn. J. Appl. Phys. 26, L179 (1987).ADSCrossRefGoogle Scholar
  14. 14.
    K. Sumino and M. Imai, Philos. Mag. A47, 753 (1983).ADSGoogle Scholar
  15. 15.
    M. Sato and K. Sumino, Proc. Yamada Conf. IX on Dislocations in Solids, H. Suzuki, T. Ninomiya, K. Sumino and S. Takeuchi, ed., Univ. Tokyo Press, Tokyo (1985) p. 391.Google Scholar
  16. 16.
    I. Yonenaga and K. Sumino, J. Appl. Phys. 62, 1212 (1987).ADSCrossRefGoogle Scholar
  17. 17.
    M. G. Mil’vidskii, V. B. Osvenskii and S. S. Shifrin, J. Cryst. Growth 52, 396 (1981).ADSCrossRefGoogle Scholar
  18. 18.
    G. Jacob, M. Duseaux, J. P. Farges, M. M. B. van den Boom and P. J. Roksnoer, J. Cryst. Growth 61, 417 (1983).ADSCrossRefGoogle Scholar
  19. 19.
    H. Kohda, K. Yamada, H. Nakanishi, T. Kobayashi, J. Osaka and K. Hoshikawa, J. Cryst. Growth 71, 813 (1985).ADSCrossRefGoogle Scholar
  20. 20.
    T. Ibuka, Y. Seta, M. Tanamura, F. Orito, T. Okano, F. Hyuga and J. Osaka, Semi-Insulating III-V Materials, Hakone, 1986, H. Kukimoto and S. Miyazawa, ed., Ohm and North-Holland, Tokyo and Amsterdam (1986) p. 77.Google Scholar
  21. 21.
    I. Yonenaga and K. Sumino, J. Appl. Phys. 64, No. 12 (1988) in press.Google Scholar
  22. 22.
    K. Sumino and H. Harada, Philos. Mag. A44, 1319 (1981).ADSGoogle Scholar
  23. 23.
    I. Yonenaga, K. Sumino and K. Yamada, Appl. Phys. Lett. 48, 326 (1986).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Koji Sumino
    • 1
  1. 1.Institute for Materials ResearchTohoku UniversitySendai 980Japan

Personalised recommendations