Advertisement

Internal Friction Due to Defects in Semiconductors

  • P. Haasen
  • U. Jendrich
  • D. Laszig
Part of the NATO ASI Series book series (NSSB, volume 202)

Abstract

It is well established that the dependence of the dislocation velocity on applied stress a and temperature T in Ge and Si can be described by the equation1–4
$$v = v_{0}\cdot \left ( \frac{\sigma} {\sigma _{o}} \right )^{m}\cdot exp \ - \ \frac{H_{v}}{kT}$$
This behaviour can be explained under the assumption that the dislocations move by overcoming a high primary Peierls potential (HKPF) by kink pair formation (KPF) and the secondary Peierls barriers (HKM) by single kink migration (KM) along the dislocation line.

Keywords

Internal Friction Partial Dislocation Activation Enthalpy Dislocation Segment Dislocation Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    H. Alexander, in: Dislocations in Solids, F. R. N. Nabarro (ed.) 7: 115 (1986)Google Scholar
  2. 2).
    H. Schaumburg, Phil. Mag. 25: 1429 (1972)ADSCrossRefGoogle Scholar
  3. 3).
    I. E. Bondarenko, V. N. Erofeev, V. I. Nikitenko, Sov. Phys.-JETP 37: 1109 (1973)ADSGoogle Scholar
  4. 4).
    P. B. Hirsch, Deformation of ceramic materials II, Mat. Sci. Res. 18: 1 (1983)ADSCrossRefGoogle Scholar
  5. 5).
    B. Ya. Farber, Yu. L. Iunin, V. I. Nikitenko, a) Phys. Stat. Sol.(a) 97: 469 (1986)ADSCrossRefGoogle Scholar
  6. 5)b).
    personal communication to P. HaasenGoogle Scholar
  7. 6).
    L. Louchet, Inst. Phys. Conf. Ser. 60: 35 (1981)Google Scholar
  8. 7).
    K. Ohori, K. Sumino, Phys. Stat. Sol. (a) 9: 151 (1972)ADSCrossRefGoogle Scholar
  9. 8).
    K. Ohori, K. Sumino, Phys. Stat. Sol. (a) 14: 489 (1972)ADSCrossRefGoogle Scholar
  10. 9).
    E. Bonetti, P. Gondi, S. Valeri, Il Nuovo Cim. 33B: 103 (1976)ADSGoogle Scholar
  11. 10).
    H. Veth, Thesis, Göttingen 1983Google Scholar
  12. 11).
    R. Jones, a) Phil. Mag. B 42: 213 (1980)CrossRefGoogle Scholar
  13. 11)b).
    J. de Phys. 44, C6: 61 (1983)Google Scholar
  14. 12).
    G. Welsch, T. E. Mitchell, R. Gibala, Phys. Stat. Sol. (a) 15: 225 (1973)ADSCrossRefGoogle Scholar
  15. 13).
    A. P. Gerk, W. S. Williams, J. Appl. Phys. 53: 3585 (1982)ADSCrossRefGoogle Scholar
  16. 14).
    H.-J. Möller, U. Jendrich, Deformation of ceramic materials II, Mat. Sci. Res. 18: 25 (1983)Google Scholar
  17. 15).
    U. Jendrich, Diploma thesis, Göttingen 1983Google Scholar
  18. 16).
    A. D. Brailsford, Phys. Rev. 122: 778 (1960)ADSCrossRefGoogle Scholar
  19. 17).
    P.D. Southgate, A. E. Attard, J. Appl. Phys. 34: 855 (1963)ADSCrossRefGoogle Scholar
  20. 18).
    G. Alefeld, J. Appl. Phys. 36: 2642 (1965)ADSCrossRefGoogle Scholar
  21. 19).
    A. Seeger, J. de Phys. 42, C5: 201 (1981)MathSciNetGoogle Scholar
  22. 20).
    H. Engelke, Phys. Stat. sol. 36: 231 and 245 (1969)ADSCrossRefGoogle Scholar
  23. 21).
    G. Fantozzi, C. Esnouf, W. Benoit, I. G. Ritchie, Progress in Mat. Sci. 27: 311 (1982)CrossRefGoogle Scholar
  24. 22).
    J. P. Hirth, J. Lothe, Theory of dislocations. McGraw-Hill, New York (1968)Google Scholar
  25. 23).
    U. Jendrich, Thesis, Göttingen 1988; U. Jendrich and P. Haasen, Phys. Stat. Sol. (a) 108: 553 (1988)Google Scholar
  26. 24).
    V. I. Mitrokhin, S. I. Rembeza, U. V. Svirilov and N. P. Yaroslavtsev, S.P.-Sol. State 27: 1247 (1985)Google Scholar
  27. 25).
    D. Laszig and P. Haasen, Phys. Stat. Sol. (a) 104: K105 (1987)ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • P. Haasen
    • 1
  • U. Jendrich
    • 1
  • D. Laszig
    • 1
  1. 1.Inst. für MetallphysikUniv. Göttingen and SFB 126GöttingenDeutschland

Personalised recommendations