Advertisement

Conductivity of Grain Boundaries and Dislocations in Semiconductors

  • R. Labusch
  • J. Hess
Part of the NATO ASI Series book series (NSSB, volume 202)

Abstract

In spite of the high perfection that can be achieved in the production of monocrystaline Silicon, the working horse of the semiconductor industry, many devices are and will be made in the future of compound as well as of elemental semiconductor material which is not so perfect, either for economic or technological reasons. This material contains dislocations and grain boundaries (GB-s). Consequently, the investigation of the electronic properties of these defects will continue to be of interest from a practical point of view.

Keywords

Fermi Level Trap Electron Bias Current Dislocation Core Half Loop 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. M. Vul and E. I. Zavaritskaya, Inst. Phys. Conf. Series No. 43, London 1979, p 421Google Scholar
  2. 2.
    G. Landwehr and P. Handler, J. Phys. Chem. Solids 29, 891 (1962)ADSCrossRefGoogle Scholar
  3. 3.
    G. Landwehr, E. Bangert and S. Uchida, Solid State Electronics 28, 171 (1985)ADSCrossRefGoogle Scholar
  4. 4.
    R. Labusch and H. Thümmel, Iswestja Akadernja Nauk SSSR, Seria Fizitsetskaja 4, moskow 1987, page 798Google Scholar
  5. 5.
    X. J. Wu, V. Szkielko, and P. Haasen, J. de Physique suppl. 10, vol. 43, C1-135.Google Scholar
  6. 6.
    G. Petermann, Diploma thesis, Göttingen 1983Google Scholar
  7. 7.
    F. J. Morin and J. P. Maita, Phys. Rev. 94, 1525 (1954)ADSCrossRefGoogle Scholar
  8. 8.
    G. Petermann, Ph. D. thesis, Göttingen 1987Google Scholar
  9. 9.
    G. Petermann, phys. stat. sol. (a), 106, 535 (1988)ADSCrossRefGoogle Scholar
  10. 10.
    G. Petermann and P. Haasen, Proc. MRS meeting, Boston Dec. 1987Google Scholar
  11. 11.
    G. Döding and R. Labusch, phys. stat. sol.(a) 68, pages 143 and 469 (1981)ADSCrossRefGoogle Scholar
  12. 12.
    V. Kveder, R. Labusch, and Yu. A. Ossipyan, phys. stat. sol.(a) 92, 293 (1985)ADSCrossRefGoogle Scholar
  13. 13.
    Yu. A. Ossipyan, Crys. Res. Technol. 16, 239 (1981)Google Scholar
  14. 14.
    H. Schaumburg, phys. stat. sol. 40, K1 (1970)ADSCrossRefGoogle Scholar
  15. 15.
    R. Labusch, Physica 117/18B, 203 (1983)Google Scholar
  16. 16.
    D. Mergel and R. Labusch, phys. stat. sol.(a) 41, 431 and 42, 165 (1977)ADSCrossRefGoogle Scholar
  17. 17.
    W. Schröter, phys. stat. sol. 31, 177 (1969)ADSCrossRefGoogle Scholar
  18. 18.
    D. Allender, J. W. Bray and J. Bardeen, Phys. Rev. B9, 119 (1974)ADSGoogle Scholar
  19. 19.
    H. Fröhlich, Proc. R. Soc. A 223, 296 (1954)ADSMATHCrossRefGoogle Scholar
  20. 20.
    P. A. Lee and T. M. Rice, phys. Rev. B 19, 3970 (1979)ADSCrossRefGoogle Scholar
  21. 21.
    J. Bardeen, Phys. Rev. Lett. 42, 1498 (1979) and Phys. Rev. Lett. 45, 1978 (1980)ADSCrossRefGoogle Scholar
  22. 22.
    R. M. Flemming, C. C. Grimes, Phys. Rev. Lett. 42, 1423 (1979)ADSCrossRefGoogle Scholar
  23. 23.
    P. Monceau, J. Richard, M. Renard, Phys. Rev. B 25, 31 (1982)ADSCrossRefGoogle Scholar
  24. 24.
    J. Richard, P. Monceau, M. Renard, Phys. Rev. B25, 948 (1982)ADSGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • R. Labusch
    • 1
  • J. Hess
    • 1
  1. 1.Institut für Angewandte PhysikT. U. ClausthalDeutschland

Personalised recommendations