Imaging of Extended Defects by Quenched Infra-Red Beam Induced Currents (Q-IRBIC)

  • A. Castaldini
  • A. Cavallini
Part of the NATO ASI Series book series (NSSB, volume 202)


The study of the electrical properties by photoabsorption and photoconductivity kinetics measurements is already a classical method in the analysis of semiconducting materials. Likewise, the Beam Induced Current mode of Scanning Microscopy is a well established technique in experimental physics, in spite of its recent birth, when dealing both with an electron beam (EBIC) and a light beam (LBIC).


Minority Carrier Lifetime Defect Image Excess Carrier Beam Wavelength Defect Energy Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. R. Wilshaw and G. R. Booker, The Theory of Recombination at Dislocations in Silicon and an Interpretation of EBIC Results in Terms of Fundamental Dislocation Parameters, in: ”Structure and Properties of Dislocations in Semiconductors,” Isz. Akad Nauk, USSR, (1987)Google Scholar
  2. 2.
    A. Castaldini, A. Cavallini, P. Gondi and E. Bonetti, Generation and Recombination Images of Dislocations in Si by Scanning Microscopy, Phys. Stat. Sol.(a) 73:617 (1982).ADSCrossRefGoogle Scholar
  3. 3.
    A. G. Milnes, ”Deep Impurities in Semiconductors,” J. Wiley & Sons, New York (1973).Google Scholar
  4. 4.
    M. Born and E. Wolf, ”Principles of Optics,” Pergamon Press, Oxford, (1987).Google Scholar
  5. 5.
    ”Handbook of Optical Constants of Solids,” E. D. Palik ed., Academic Press, Orlando (1985).Google Scholar
  6. 6.
    A. Castaldini and A. Cavallini, Infrared Beam Induced Contrast with Double Illumination, in: ”Scanning Microscopy Technologies and Applications,” E. C. Teague, ed., SPIE, Los Angeles (1988). (1988).Google Scholar
  7. 7.
    T. Wilson and E. M. McCabe, Theory of Optical Beam Induced Current Images of Defects in Semiconductors, J. Appl. Phys. 58: 2638 (1986).ADSCrossRefGoogle Scholar
  8. 8.
    R. Gonzales and P. Wint, ”Digital Image Processing,” Addison-Wesley, (1977).Google Scholar
  9. 9.
    C. Donolato, Contrast and Resolution of SEM Charge-Collection Images of Dislocations, Appl. Phys. Lett. 34:80 (1979).ADSCrossRefGoogle Scholar
  10. 10.
    R. H. Bube, ”Photoconductivity of Solids,” J. Wiley & Sons, New York (1960).MATHGoogle Scholar
  11. 11.
    W. Jones and N. H. March, ”Theoretical Solid State Physics,” J. Wiley & Sons, New York (1973).Google Scholar
  12. 12.
    K. Seeger, ”Semiconductor Physics,” Springer-Verlag, Berlin (1985).CrossRefGoogle Scholar
  13. 13.
    C. Donolato, Quantitative Evaluation of EBIC Contrast of Dislocations, J. de Physique, C4:269 (1983).Google Scholar
  14. 14.
    M. Kittler and W. Seifert, On the Sensitivity of the EBIC Technique as Applied to Defect Investigations in Silicon, Phvs. Stat. Sol.(a) 66:573 (1981).ADSCrossRefGoogle Scholar
  15. 15.
    H. Alexander, Dislocations in Covalent Crystals, in: ”Dislocations in Solids,” F. R. N. Nabarro, ed., North-Holland, Amsterdam (1986).Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • A. Castaldini
    • 1
  • A. Cavallini
    • 1
  1. 1.Department of Physics, CISM-GNSMUniversity of BolognaBolognaItaly

Personalised recommendations