Recombination at Dislocations in Silicon and Gallium Arsenide

  • P. R. Wilshaw
  • T. S. Fell
  • G. R. Booker
Part of the NATO ASI Series book series (NSSB, volume 202)


For many years it has been known that dislocations in semiconductors are associated with energy levels within the band gap. Such levels have been detected experimentally in many ways. For example charge trapped at the dislocation level both alters the free carrier concentration which can be measured using the Hall effect and also introduces unpaired electrons whose spin can be detected using EPR. The thermal capture and re-emission of carriers at the defect energy levels can be measured using DLTS. The emission of photons when carriers make a transition to the dislocation level can be observed in photoluminescence experiments. In each case the experimental results obtained can be directly related to the position or concentration of the energy levels present, or the relevant theory describing the experiment is sufficiently complete that the data may be interpreted in such terms with a good degree of confidence1. In respect to deformation induced dislocations in silicon, all of the above techniques have been widely used to characterise the parameters describing energy levels at dislocations. It is thus surprising that the cause of the energy levels is still not understood. They have been variously attributed to the dislocation strain field, dangling bonds at the dislocation core, kinks, jogs, faults in the reconstruction process of dangling bonds, and impurities or point defect centres present at the dislocation.


Screw Dislocation Minority Carrier Space Charge Region Hole Capture Electron Capture Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    See for example P. Omling, E. R. Weber, L. Montelius, H. Alexander and J. Michel, Phys. Rev. B 32, 6571 (1985).ADSCrossRefGoogle Scholar
  2. 2.
    J. Heydenreich, H. Blumtritt, R. Gleichmann and H. Johansen, Cryst. Res. and Tech. 16, 133 (1981).Google Scholar
  3. 3.
    A. Ourmazd, P. R. Wilshaw and G. R. Booker, Physica 116B 600 (1983).Google Scholar
  4. 4.
    M. Kittler and W. Seifert, Phys. Stat. Sol. (a) 66, 573 (1981).ADSCrossRefGoogle Scholar
  5. 5.
    L. C. Kimerling, H. J. Leamy and J. R. Patel, Appl. Phys Lett. 30, 217 (1977).ADSCrossRefGoogle Scholar
  6. 6.
    A. Ourmazd, Cryst. Res. Tech. 16, 137 (1981).Google Scholar
  7. 7.
    A. Jakubowicz, H. U. Harbermeier, A. Eisenbeiss and D. Käss, Phys. Stat. Sol. (a) 104, 635 (1987).ADSCrossRefGoogle Scholar
  8. 8.
    T. Figielski, Solid State Electron. 21, 1403 (1978).ADSCrossRefGoogle Scholar
  9. 9.
    D. R. Wight, I. D. Blenkinsop, W. Harding and B. Hamilton, Phys. Rev. B 23, 5495 (1981).ADSCrossRefGoogle Scholar
  10. 10.
    C. Donolato, Optik 52, 19 (1978).Google Scholar
  11. 11.
    O. Engström and A. Anders, Solid State. Electron. 21, 1571 (1978).ADSCrossRefGoogle Scholar
  12. 12.
    R. Labusch, J. Physique 40, C6-81 (1979).Google Scholar
  13. 13.
    R. Masut, C. M. Penchina and J. L. Farvacque, J. Appl. Phys. 53(7), 4964 (1982).ADSCrossRefGoogle Scholar
  14. 14.
    E. B. Sokolova, Sov. Phys. Semiconductors 3, 1266 (1970).Google Scholar
  15. 15.
    P. R. Wilshaw and G. R. Booker, Inst. Phys. Conf. Ser. 76, 329 (1985).Google Scholar
  16. 16.
    P. R. Wilshaw, A. Ourmazd and G. R. Booker J. Physique 44, C4-445 (1983).Google Scholar
  17. 17.
    R. Jones S. Öberg and S. Marklund, Phil. Mag. B. 43, 839 (1981).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • P. R. Wilshaw
    • 1
  • T. S. Fell
    • 1
  • G. R. Booker
    • 1
  1. 1.Department of Metallurgy and Science of MaterialsUniversity of OxfordOxfordUK

Personalised recommendations