SEM Studies of Individual Defects in Semiconductors

  • D. B. Holt
Part of the NATO ASI Series book series (NSSB, volume 202)


Studies of the physical properties of individual defects in semiconductors are essential to resolve important current questions in this field. These questions outlined here are the role of impurity dislocation interactions, the glide or shuffle set character of dislocation core structures and the influence of the polar character of defects in semiconducting compounds. The principles underlying the use of scanning electron microscopy methods such as EBIC (electron beam induced current) and CL (cathodoluminescence) and the analogous scanning light (laser) microscopy methods for such studies, OBIC (optical BIC), IRBIC (infrared BIC) and SRPL (spatially resolved photoluminescence) are outlined. The significance of the many types of resolution available is emphasised as is the fact that spatial and signal resolution are reciprocally related. The application of the phenomenological (Donolato) theory of dark EBIC ( and CL) contrast makes it possible to determine the strengths (recombination velocities) of defects. The physical theory of dislocation recombination (Wilshaw) derives this strength in terms of more basic parameters. It is emphasised that some defects give rise to bright CL contrast or bright-dark EBIC contrast which can provide information on other properties.


Misfit Dislocation Minority Carrier Lifetime Defect Core Antiphase Domain Individual Defect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander, H. and Haasen, P., 1968, Dislocations and Plastic Flow in the Diamond Structure, Sol. State Phys. 22:27–158CrossRefGoogle Scholar
  2. Balk, L. J., 1988, Scanning Electron Acoustic Microscopy, Adv. Eletron. El Phys. 71: 1–73CrossRefGoogle Scholar
  3. Bell, R. L. and Willoughby, A. F. W., 1966, Etch-pit Studies of Dislocations in Indium Antimonide, J. Mater, Sci. 1: 219–228ADSCrossRefGoogle Scholar
  4. Bell, R. L. and Willoughby, A. F. W., 1970, The Effect of Plastic Bending on the Electrical Properties of Indium Antimonide Part 2 Four-Point Bending of n-type Materials, J. Mater. Sci. 1: 219–228ADSCrossRefGoogle Scholar
  5. Bimberg, D., Christen, J., Fukunaga, T., Nakashima, H., Mars, D. E. and Miller J. N., 1988, Direct Imaging of the Columnar Structure of GaAs Quantum Wells, Superlattices and Microstructures 4: 257–263ADSCrossRefGoogle Scholar
  6. Blanc, J., 1975, Thermodynamics of “Glide” and “Shuffle” Dislocations in the Diamond Lattice, Phil. Mag. 32, 1023–1032ADSCrossRefGoogle Scholar
  7. Chu, S. N. G., Nakahara, S., Pearton, S. J., Boone, T. and Vernon, S. M., 1988, Antiphase Domains in GaAs Grown by Metalorganic Chemical Vapor Deposition on Silicon-on-Insulator, J. Appl. Phys. 64:2981–2989ADSCrossRefGoogle Scholar
  8. Donolato, C., 1985, Beam Induced Current Characterization, in “Polycrystalline Semiconductors. Physical Properties and Applications”., G. Harbeke ed., Springer-Verlag, Berlin pp. 138–154CrossRefGoogle Scholar
  9. Farvacque, J. L., Ferre, D. and Vignaud, D., 1983, Experimental Studies of Energy States Associated with Dislocations in III-V Compounds, J. de Phys. Colloque C4 pp C4-115 to C4–123CrossRefGoogle Scholar
  10. Figielski, T., 1960, Electronic Processes at Intercrystalline Barriers in Germanium, Acta Phys. Polonica XIX: 607–630Google Scholar
  11. Gowers, J. P., 1984, TEM Image Contrast from Antiphase Domains in GaAs: Ge (001) Grown by MBE, Appl. Phys. A34:231–236ADSGoogle Scholar
  12. Hanley, P. L. Kiflawi, I and Lang, A. R., 1977, On Topographically Identifiable Sources of Cathodoluminescence in Natural Diamonds, Phil Trans. R. Soc. Lond. 284: 329–368ADSCrossRefGoogle Scholar
  13. Hirsch, P. B., 1980, Electronic and Mechanical Properties of Dislocations in Semiconductors, Proc. Mat. Res. Sci. Ann. Meeting, 1980, Boston, North-Holland, New York, 257–271Google Scholar
  14. Hirsch, P. B., 1985, Dislocations in Semiconductors, Mat. Sci. Technol. 1:666–677CrossRefGoogle Scholar
  15. Holt, D. B., 1969, Antiphase Boudnaries in Semiconducting Compounds, J. Phys. Chem. Solids 30: 1297–1308ADSCrossRefGoogle Scholar
  16. Holt, D. B. 1979, Device Effects of Dislocations, J. de Phys. Colloque C6 pp. C6-189 to C6–199CrossRefGoogle Scholar
  17. Holt, D. B., 1984, Polarity Reversal and Symmetry in Semiconducting Compounds with the Sphalerite and Wurtzite Structures, J. Mater. Sci. 19: 439–446ADSCrossRefGoogle Scholar
  18. Holt, D. B., 1988, Surface Polarity and Symmetry in Semiconducting Compounds Part 1. Macroscopic Effects of Polarity, J. Mater. Sci. 23: 1131–1136ADSCrossRefGoogle Scholar
  19. Hungerford, G. A. and Holt, D. B., 1987, Electron Dose Induced Variations in EBIC Line Scan Profiles Across Silicon p-n Junctions, in “Microscopy of Semiconducting Materials 1987. Conf. Series No. 87”, A. G. Cullis and P. Augustus, eds., Inst. Phys., Bristol ppl 721–726Google Scholar
  20. Hungerford, G. A. and Holt, D. B., 1988, Theoretical curve Fitting to EBIC Junction Profiles, in “EUREM 88. Conf. Series No. 93” P. J. Goodhew and H. G. Dickinson, eds., Inst. Phys., Bristol pp69–70Google Scholar
  21. Jakubowicz, A., 1986, Theory of Cathodoluminescence Contrast from Localized Defects in Semiconductors, J. Appl. Phys., 59: 2205–2209ADSCrossRefGoogle Scholar
  22. Jakubowicz, A., Bode, M. and Habermeier, H-U, 1987, Simultaneous EBIC/CL Investigations of Dislocations in GaAs, in “Microscopy of Semiconducting Materials 1987” Conf. Series No 87, A. G. Cullis and P. D. Augustus, eds. Inst. Phys., Bristol pp763–768Google Scholar
  23. Joy, D. C., 1986, The Interpretation of EBIC Images Using Monte Carlo Simulations, J. Microscopy 143: 233–248CrossRefGoogle Scholar
  24. Joy, D. C., 1988, An Introduction to Monte Carlo Simulations, in “EUREM 88. Conf. Series No. 93”. P. J. Goodhew and H. G. Dickinson, eds., Inst. Phys., Bristol pp23–32Google Scholar
  25. Kiflawi, I. and Lang, A. R., 1974, Linearly Polarized Luminescence from Linear Defects in Natural and Synthetic Diamond, Phi. Mag. 30: 219–223ADSCrossRefGoogle Scholar
  26. Kittler, M., and Seifert, W., 1981, On the Sensitivity of the EBIC Technique as Applied to Defect Investigations in Silicon, Phys. Stat. Sol (A), 66: 573–583ADSCrossRefGoogle Scholar
  27. Kroemer, H., 1983, Heterostructure Devices: A Device Physicist Looks at Interfaces, Surf. Sci. 132:543–576ADSCrossRefGoogle Scholar
  28. Labusch, R. and Schröter, W., 1978, Electrical Properties of Dislocations in Semiconductors, in “Dislocations in Solids Vol. 5,” F. R. N. Nabarro, ed., North-Holland, Amsterdam.Google Scholar
  29. Löhnert, K. and Kubalek, E., 1984, The Cathodoluminescence Contrast Formation of Localized Non-Radiative Defects in Semiconductors, Phys. Stat. Sol. a83: 307–314ADSCrossRefGoogle Scholar
  30. Matare, H. F. and Laakso, C. W., 1969, Space-Charge Domains at Dislocation Sites, J. Appl. Phys. 40: 476–482ADSCrossRefGoogle Scholar
  31. Morizane, K., 1977, Antiphase Domain Structures in GaP and GaAs Epitaxial Layers Grown on Si and Ge, J. Cryst. Growth 39:249–254ADSCrossRefGoogle Scholar
  32. Myhajlenko, S., Batstone, J. L. Hutchinson, H. J. and Steeds, J. W., 1984, Luminescence Studies of Individual Dislocations in II-VI (ZnSe) and III-V (InP) Semiconductors, J. Phys. C17: 64–77Google Scholar
  33. Napchan, E. and Holt, D. B., 1987, Application of Monte Carlo Simulations in the SEM Study of Heterojunctions, in “Microscopy of Semiconducting Materials 1987. Conf. Series No. 87”, A. G. Cullis and P. Augustus, eds., Inst. Phys., Bristol pp. 733–738Google Scholar
  34. Napchan, E., 1988, Electron and Photon-Matter Interaction: Energy Dissipation and Injection Level, J. de Phys. to be published, (Proc. BIADS 88)Google Scholar
  35. Neave, J. H., Larsen, P. K., Joyce, B. A., Gowers, J. P. and Van der Veen, J. F., 1983, Some Observations on Ge: GaAs(001) and GaAs: Ge(001) Interfaces and Films, J. Vac. Sci. Technol. B1:668–675Google Scholar
  36. Ourmazd, A., Weber, E., Gottschalk, G. R. and Alexander, H., 1981, The Electrical Behaviour of Individual Screw and 60 Dislocations in n-type Silicon, in “Microscopy of Semiconducting Materials 1981. Conf. Series No. 60”, A. G. Cullis and D. C. Joy, eds, Inst. Phys. Bristol pp. 63–68Google Scholar
  37. Pasemann, L., 1981a, A Contribution to the Theory of the EBIC Contrast of Lattice Defects in Semiconductors, Ultramicroscopy 6: 237–250Google Scholar
  38. Pasemann, L., 1981b, On the EBIC Contrast of Dislocations, Cryst. Res. Tech. 16: 147–148Google Scholar
  39. Pasemann, L. and Hergert, W., 1986, A Theoretical Study of the Determination of the Depth of a Dislocation by Combined Use of EBIC and CL Technique, Ultramicroscopy 19: 15–22CrossRefGoogle Scholar
  40. Pasemann, L. and Hergert, W., 1987, On EBIC and Cathodoluminescence Contrast from an Individual Dislocation, Izv. Akad. Nauk Ser. Fiz. 51: 1528–1534Google Scholar
  41. Pasemann, L., Blumentritt, H. and Gleichmann, R., 1982, Interpretation of the EBIC Contrast of Dislocations in Silicon, Phys. Stat. Sol. A70:197–209ADSCrossRefGoogle Scholar
  42. Pester, P. D. and Wilson, T., 1988, Time-dependent Theory of Optical-Beam-Induced Current Imaging of Defects in Semiconductors, J. Appl. Phys. 64: 1131–1135ADSCrossRefGoogle Scholar
  43. Rasul, A. and Davidson, S. M., 1977, A Detailed Study of Radiative and Non-Radiative Recombination around Dislocations in GaP, in “Gallium Arsenide and Related Compounds (Edinburgh) 1976”, Inst. Phys. Bristol pp. 306–316Google Scholar
  44. Read, W. T., 1954, Theory of Dislocations in Germanium, Phil. Mag. 45: 775–796MATHGoogle Scholar
  45. Read, W. T., 1955a, Statistics of the Occupation of Dislocation Acceptor Centres, Phil. Mag. 45: 1119–1128Google Scholar
  46. Read, W. T., 1955b, Scattering of Electrons by Charged Dislocations in Semiconductors, Phil. Mag. 46: 111–131Google Scholar
  47. Russell, G. J., Robertson, M. J. Vincent, B., and Woods, J., 1980, An Electron Beam Induced Current Study of Grain Boundaries in Zinc Selenide, J. Mater. Sci. 15: 939–944ADSCrossRefGoogle Scholar
  48. Russell, G. J. Waite, P., and Woods, J., 1981, in “Microscopy of Semiconducting Materials 1981. Conf. Series No. 60”, A. G. Cullis and D. C. Joy, eds., Inst. Phys., Bristol pp. 371–376Google Scholar
  49. Steeds, J. W., 1988, Performance and Applications of a STEM-Cathodoluminescence System, J. de Phys. to be published (Proc. BIADS 88).Google Scholar
  50. Wilke, V., 1985, Optical Scanning Microscopy — The Laser Scan Microscope, Scanning 7: 88–96CrossRefGoogle Scholar
  51. Wilshaw, P. R. and Booker, G. R., 1985, New Results and an Interpretation for SEM EBIC Contast arising from Individual Dislocations in Silicon, in “Microscopy of Semiconducting Materials 1985. Conf. Series No. 76”, A. G. Cullis and D. B. Holt, eds., Inst. Phys. Bristol pp. 329–336Google Scholar
  52. Wilshaw, P. R. and Booker, G. R. 1987, The Theory of Recombination at Dislocations in Silicon and an Interpretation of EBIC Results in Terms of Fundamental Dislocation Parameters, Izv. Acad. Nauk Ser. Fiz. 51: 1582–1586Google Scholar
  53. Yamaguchi, A., Komiya, S., Ueda, O. Nakajima, K., Umebu, I. and Akita, K., 1981, Asymmetric Character of Misfit Dislocations in LPE DH InGaAsP/InP, in “Gallium Arsenide and Related Compounds 1981. Conf. Series No. 63”, T. Sugano, ed., Inst. Phys., Bristol pp. 161–166Google Scholar
  54. Yamamoto, N., Spence, J. C. H. and Fathy, D., 1984, Cathodoluminescence and Polarization Studies from Individual Dislocations in Diamond, Phil. Mag. 49: 609–629CrossRefGoogle Scholar
  55. Ziegler, E., Siegel, W., Blumtritt, H. and Breitenstein, O., 1982, Electrical and EBIC Investigations of GaP Grain Boundaries, Phys. Stat. Sol. a72: 593–605ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • D. B. Holt
    • 1
  1. 1.Department of MaterialsImperial College of Science Department of Technology and MedicineLondonUK

Personalised recommendations