Tunneling Spectroscopy and III-V Semiconductor Interfaces

  • O. Albrektsen
  • H. W. M. Salemink
Part of the NATO ASI Series book series (NSSB, volume 202)


The (110) cleavage plane of GaAs is of high interest for the characterization of semiconductor multilayers grown along the <001> direction. After cleaving in ultra-high vacuum (UHV), the (110) GaAs face exhibits a simple and regular, unreconstructed 1×1 surface unit cell with both Ga and As atoms showing up in the terminating surface,1 fig. 1. For the clean surface, electronic surface states are found outside the semiconductor bandgap, in the valence and conduction band.2 Hence, the electronic spectroscopy at the surface has a similarity to that of the bulk material. Such a situation is not found on the silicon surfaces, where the surface states dominate in the semiconductor bandgap.3 As the (110) plane is an orthogonal cross section to the <001> growth direction, the tunneling spectroscopy on this face might be used to study the electronic properties along the growth direction, in a similar sense that TEM reflects the structural coordination in the interfaces.4 The instrument used for the experiments described here is a usual ‘pocket size’ scanning tunneling microscope (STM), which is mounted inside a UHV electron microscope;5 in a connected UHV chamber, the GaAs samples are cleaved and the tunneling tips are prepared by sputtering and heating. Both samples and tips are transferred in UHV to the analysis chamber where the SEM is used to move the tunneling tip to the layers of interest. A description of the operation of the STM can be found in the literature.


Scanning Tunneling Microscope Scanning Tunneling Microscope Image Adsorbed Atom Tunneling Spectroscopy Local Conductivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Feenstra, J. A. Stroscio, J. Tersoff and A. P. Fein, Phys. Rev. Lett. 58:1192 (1987).ADSCrossRefGoogle Scholar
  2. 2.
    B. Reihl, T. Riesterer, M. Tschudy and P. Perfetti, Phys. Rev. B38(13):456 (1988–II)Google Scholar
  3. 3.
    J. A. Stroscio, R. M. Feenstra and A. P. Fein, Phys. Rev. Lett. 57:2579 (1986).ADSCrossRefGoogle Scholar
  4. 4.
    P. Muralt, H. Meier, D. W. Pohl and H. Salemink, Superlattices and Microstructures 2:519 (1986).ADSCrossRefGoogle Scholar
  5. 5.
    C. Gerber, G. Binnig, H. Fuchs, O. Marti and H. Rohrer, Rev. Sci. Instrum. 57:221 (1986).ADSCrossRefGoogle Scholar
  6. 6.
    Proc. STM Workshop, Oberlech, Austria (1985): IBM J. Res. Devel. 30(4,5) (1986).Google Scholar
  7. 7.
    N. Garcia (ed.) Proc. STM’ 86, Santiago de Compostela, Spain, Surf. Sci. 181, Special Issue (1986).Google Scholar
  8. 8.
    R. Feenstra (ed.) Proc. STM’ 87, J. Vac. Sci. Technol. A6(2) (1988).Google Scholar
  9. 9.
    P. Muralt and D. W. Pohl, Appl. Phys. Lett. 48:514 (1986).ADSCrossRefGoogle Scholar
  10. 10.
    P. Muralt, H. Meier, D. W. Pohl and H. W. M. Salemink, Appl. Phys. Lett. 50:1352 (1987).ADSCrossRefGoogle Scholar
  11. 11.
    J. R. Kirtley, S. Washburn and M. J. Brady, Phys. Rev. Lett. 60:1546 (1988).ADSCrossRefGoogle Scholar
  12. 12.
    N. Ashcroft and N. Mermin, “Solid State Physics,” Holt, Rinehard and Winston, New York (1976) p. 596; G. Duggan in: “Heterojunction Band Discontinuities, Physics and Device Applications,” F. Capasso and G. Margaritondo, ed., Elsevier Science Publishers, Amsterdam (1987) p. 207.Google Scholar
  13. 13.
    J. A. Stroscio, R. M. Feenstra and A. P. Fein, Phys. Rev. B36:7718 (1987).ADSGoogle Scholar
  14. 14.
    H. W. M. Salemink, H. P. Meier, R. Ellialtioglu, J. W. Gerritsen and P. R. Muralt, Appl. Phys. Lett. to appear March 1989.Google Scholar
  15. 15.
    M. Heiblum, M. I. Nathan and M. Eizenberg, Appl. Phys. Lett. 47:503 (1985).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • O. Albrektsen
    • 1
    • 2
  • H. W. M. Salemink
    • 1
  1. 1.IBM Research DivisionZurich Research LaboratoryRüschlikonSwitzerland
  2. 2.Institute of Applied PhysicsTechnical University of CopenhagenLyngbyDenmark

Personalised recommendations