STM and Related Techniques

  • D. W. Pohl
Part of the NATO ASI Series book series (NSSB, volume 202)


STM has raised a high degree of attention in the world of microscopy and surface science over the past couple of years.1,2 What are the reasons? In my opinion, there are four major points:
  1. 1.

    Resolution: STM is capable of imaging individual atoms on a surface. There are few other techniques that provide similar resolution, showing single atoms only under very particular conditions. In field ion microscopy, for instance, only atoms located at the apex of the field-emission tip can be imaged individually.

  2. 2.

    New information: Tunnel electrons arrive at the sample surface with millivolt to few-volt energies. They gently stroke the surface instead of striking it like in a conventional electron microscope. As a consequence STM provides preferentially information on the most softly bound electrons — the electrons near the Fermi level, which happen to be the most important for many chemical and electrical properties and processes. Furthermore, having such a small energy, object damage due to electron irradiation is practically impossible. This can be important for the study of low-stability materials such as biological tissue.

  3. 3.

    New approach: The STM as an instrument has more in common with a profilometer than with a conventional microscope. In any conventional microscope, a beam of particles/waves is directed onto or emitted from the surface, creating an image by diffraction, deflection, or projection. In STM, a stylus of finite, actually huge mass (compared to the structures to be analyzed) is physically moved across the surface — a few years ago, probably no one would have expected that such a scheme could be used successfully to obtain atomic resolution.

  4. 4.

    Nano-engineering: The surprising results of STM indicate a possibility to manipulate macroscopic bodies with atomic precision. As we are penetrating deeper into the world of nanometer dimensions — be it in microelectronics, be it in biology — such a capability is of utmost interest not only for surface characterization but also for modification, processing and alignment on the mesoscopic, say, 0.3 to 30 nm scale.



Tunnel Current Atomic Resolution Silver Surface American Physical Society Jellium Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Binnig and H. Rohrer, Physica 127B, 37 (1984).Google Scholar
  2. 2.
    P. K. Hansma, J. Appl. Phys. 61, R1 (1987).ADSCrossRefGoogle Scholar
  3. 3.
    D. W. Pohl, IBM J. Res. Develop. 30, 417 (1986).CrossRefGoogle Scholar
  4. 4.a)
    R. J. Hamers and J. E. Demuth, IBM J. Res. Develop. 30, 396 (1986)CrossRefGoogle Scholar
  5. 4.b)
    U. Köhler, R. J. Hamers and J. E. Demuth (in prep.).Google Scholar
  6. 5.
    R. M. Feenstra, J. A. Stroscio, J. Tersoff and A. Fein, Phys. Rev. Lett. 58, 1192 (1987).ADSCrossRefGoogle Scholar
  7. 6.
    J. Gimzewski, E. Stoll and R. Schlittler, Surf. Sci. 181, 267 (1987).ADSCrossRefGoogle Scholar
  8. 7.
    R. Christoph, H. Siegenthaler, H. Rohrer and H. Wiese, Electrochimica Acta (to be publ.).Google Scholar
  9. 8.
    B. Michel and G. Travaglini, Proc. 1988 STM Conf., Oxford: J. Microsc. (in press).Google Scholar
  10. 9.
    A. Baratoff, G. Binnig, H. Fuchs, F. Salvan and E. Stoll, Surf. Sci. 168, 734 (1986).ADSCrossRefGoogle Scholar
  11. 10.
    P. Muralt, H. Meier, D. W. Pohl and H. Salemink, Appl. Phys. Lett. 50, 1352 (1987); P. Muralt and D. W. Pohl, Appl. Phys. Lett. 48, 514 (1986).ADSCrossRefGoogle Scholar
  12. 11.
    D. W. Pohl and R. Möller, Rev. Sci. Instrum. 59, 840 (1988).ADSCrossRefGoogle Scholar
  13. 12.
    J. H. Coombs, J. K. Gimzewski, B. Reihl, J. K. Sass and R. R. Schlittler, Proc. 1988 STM Conf., Oxford: J. Microsc. (in press).Google Scholar
  14. 13.
    J. K. Gimzewski, J. K. Sass, R. R. Schlittler and J. Schott, Europhys. Lett. 8, 435 (1989).ADSCrossRefGoogle Scholar
  15. 14.
    B. Persson and A. Baratoff (in prep.).Google Scholar
  16. 15.
    J. H. Coombs and J. K. Gimzewski, Proc. 1988 STM Conf., Oxford: J. Microsc. (in press).Google Scholar
  17. 16.
    U. Dürig, O. Züger and D. W. Pohl, Proc. 1988 STM Conf., Oxford: J. Microsc. 152, pt. I, 259 (1988). U. Dürig, J. K. Gimzewski and D. W. Pohl, Phys. Rev. Lett. 57, 2403 (1986).Google Scholar
  18. 17.
    M. Nonnenmacher, J. W. Bartha, O. Wolter, D. W. Pohl and R. Kassing, Beitr. Elektronenmikr. Direktabb. Oberfl. 21, 13 (1988).Google Scholar
  19. 18.a)
    J. K. Gimzewski, R. Möller, D. W. Pohl and R. R. Schlittler, Surf. Sci. 189/190, 15 (1987)ADSCrossRefGoogle Scholar
  20. 18.b)
    J. K. Gimzewski and R. Möller, Phys. Rev. B 36, 1284 (1987).ADSGoogle Scholar
  21. 19.
    N. D. Lang, Phys. Rev. B 36, 8173 (1987).ADSGoogle Scholar
  22. 20.
    R. Allenspach and A. Bischof, Appl. Phys. Lett. 54, 587 (1989).ADSCrossRefGoogle Scholar
  23. 21.
    for a recent review see D. W. Pohl, U. Ch. Fischer and U. T. Dürig, Proc. SPIE 897, 84 (1988).Google Scholar
  24. 22.a)
    D. W. Pohl, W. Denk and U. Dürig, Proc. SPIE 565, 56 (Micron and Submicron Integrated Circuit Metrology 1985)Google Scholar
  25. 22.b)
    U. Dürig, D. W. Pohl and F. Rohner, J. Appl. Phys. 59, 3318 (1986).ADSCrossRefGoogle Scholar
  26. 23.
    E. Betzig, M. Isaacson, H. Barshatzky, A. Lewis and K. Lin, Proc. SPIE 897, 91 (1988).Google Scholar
  27. 24.
    U. Ch. Fischer, U. T. Dürig and D. W. Pohl, Appl. Phys. Lett. 52, 249 (1988).Google Scholar
  28. 25.
    U. Ch. Fischer and D. W. Pohl, Phys. Rev. Lett. 62, 458 (1989).ADSCrossRefGoogle Scholar
  29. 26.
    G. Binnig, C. F. Quate and Ch. Gerber, Phys. Rev. Lett. 56, 930 (1986).ADSCrossRefGoogle Scholar
  30. 27.
    Y. Martin, C. C. Williams and H. K. Wickramasinghe, J. Appl. Phys. 61, 4723 (1987).ADSCrossRefGoogle Scholar
  31. 28.
    See, for instance, G. Binnig, Ch. Gerber, E. Stoll, T. R. Albrecht and C. F. Quate, Europhys. Lett. 3, 1281 (1987).ADSCrossRefGoogle Scholar
  32. 29.
    C. C. Williams and H. K. Wickramasinghe, Appl. Phys. Lett. 49, 1587 (1986).ADSCrossRefGoogle Scholar
  33. 30.
    J. R. Matey and J. Blanc, J. Appl. Phys. 57, 1437 (1985).ADSCrossRefGoogle Scholar
  34. 31.
    H. P. Kleinknecht, H. Meier and J. Sandercock, Beitr. Elektronenmikr. Direktabb. Oberfl. 21, 19 (1988).Google Scholar
  35. 32.
    H. K. Wickramasinghe (priv. communic.).Google Scholar
  36. 33.
    J. A. Jarell, J. G. King and J. W. Mills, Science 211, 277 (1981).ADSCrossRefGoogle Scholar
  37. 34.
    P. Hansma, Proc. 1988 STM Conf., Oxford: J. Microsc. (in press).Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • D. W. Pohl
    • 1
  1. 1.IBM Research DivisionZurich Research LaboratoryRüschlikonSwitzerland

Personalised recommendations