Advertisement

Interaction Mechanisms at Microscopic Level

  • Paolo Bernardi
  • Guglielmo D’Inzeo

Abstract

The interaction mechanisms can be examined at different organization levels of the biological matter. The study can be developed considering complex systems, as organs and tissues, then less complex ones, as chains or groups of cells, and ultimately cells or subcellular components (membrane, nucleus, membrane channels). The lowest subcellular level gives the deepest knowledge on the interaction characteristics and allows an analysis of the physical and chemical action induced by the EM field on the charges of the biological body.

Keywords

Dipole Moment Static Magnetic Field Atomic Polarization Permanent Dipole Moment Nonlinear Electrodynamic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adey, W. R., Bawin, S. M., and Lawrence, A. F., 1982, Effects of weak amplitude-modulated microwave fields on calcium efflux from awake cat cerebral cortex, Bioelectromag., 3:295.CrossRefGoogle Scholar
  2. Adey, W. R., 1984, Nonlinear, nonequilibrium aspects of electromagnetic field interactions at cell membranes, in: “Nonlinear Electrodynamics in Biological Systems,” W. R. Adey, and A. F. Lawrence, eds., Plenum Press, New York.CrossRefGoogle Scholar
  3. Adey, W. R., and Lawrence, A. F., 1984, “Nonlinear Electrodynamics in Biological Systems,” Plenum Press, New York.CrossRefGoogle Scholar
  4. Albanese, R. A., and Bell, E. L., 1984, Radiofrequency radiation and chemical reaction dynamics, in: “Nonlinear Electrodynamics in Biological Systems,” W.R. Adey, and A.F. Lawrence, eds., Plenum Press, New York.Google Scholar
  5. Alekseyev, S. I., Tyazhelov, V. V., Grigor’ev, P. A., and Siden, G. I., 1980, Some aspects of microwave effect on the bilayer membranes modified with gramicidin, Biophysics. 25:750.Google Scholar
  6. Allis, J. W., Sinha, B. L., 1981, Fluorescence depolarization studies of red cell membrane fluidity. The effect of exposure to 1.0 GHz microwave radiation, Bioelectromag., 2:13.CrossRefGoogle Scholar
  7. Allis, J. W., Sinha, B. L., 1982, Fluorescence depolarization studies of the phase transition in multilamellar phospholipid vesicles exposed to 1.0 GHz microwave radiation, Bioelectromag., 3:323.CrossRefGoogle Scholar
  8. Arber, S. L., 1976, Effect of microwaves on resting potential of giant neurons of mollusk, Helix pomatia, Elektron, Obrab, Mater. 6:78.Google Scholar
  9. Arber, S. L., 1981, The effect of microwave radiation on passive membrane properties of snail neurons, J. Microwave Power, 16:15.Google Scholar
  10. Arber, S. L., and Lin, J. C., 1983, Microwave enhancement of membrane conductance in snail neurons: role of temperature, Physiol. Chem. Phys., 15:259.Google Scholar
  11. Arber, S. L., and Lin, J. C., 1984, Microwave enhancement of membrane conductance in snail neurons: effects of EDTA, caffeine and tetracaine, Physiol. Chem. Phys., 16:469.Google Scholar
  12. Arber, S. L., and Lin, J. C, 1985a, Microwave-induced changes in nerve cells: effects of modulation and temperature, Bioelectromag., 6:257.CrossRefGoogle Scholar
  13. Arber, S. L., and Lin, J. C., 1985b, Extracellular calcium and microwave enhancement of membrane conductance in snail neuron, Radiat. Environ., 24:149.CrossRefGoogle Scholar
  14. Athey, T. W., 1981, Comparison of RF-induced calcium efflux from chick brain at different frequencies: do the scaled power density windows align?, Bioelectromag., 2:407.CrossRefGoogle Scholar
  15. Bawin, S. M., Kaczmarek, K. L., and Adey, W. R., 1975, Effects of modulated VHF fields on the central nervous system, Ann. N.Y. Acad. Sci., 247:74.PubMedCrossRefGoogle Scholar
  16. Bawin, S. M., and Adey, W. R., 1976, Sensitivity of calcium binding in cerebral tissue to weak environmental electric fields oscillating at low frequencies, Proc. Natl. Acad. Sci. U.S.A., 73:1999.PubMedCrossRefGoogle Scholar
  17. Bawin, S. M., and Adey, W. R., 1977, Calcium binding in cerebral tissues, in: “Biological Effects and Measurement of Radiofrequency Microwaves,” D. G. Hazzard, ed., HEW Publ., FDA.Google Scholar
  18. Bawin, S. M., Sheppard, A. R., and Adey, W. R., 1978, Possible mechanisms of weak electromagnetic field coupling in brain tissue, Bioelectrochem. Bioenerg., 5:67.CrossRefGoogle Scholar
  19. Bernardi, P., D’Inzeo, G., Eusebi, F., Grassi, F., and Tamburello, C., Microwave-induced desensitization of acetylcholine receptor channels in cultured quail myotubes, 10th Annual Meet, of Bioelectromag. Soc., (Abstr.), Stamford, USA).Google Scholar
  20. Blank, M., and Britten, J. S., 1978, The surface compartment model of the steady state excitable membrane, Bioelectrochem. Bioenerg., 5:528.CrossRefGoogle Scholar
  21. Blank, M., and Kavanaugh W.P., 1982, The surface compartment model (SCM) during transients, Bioelectrochem. Bioenerg., 9:427.CrossRefGoogle Scholar
  22. Blank, M., 1983, The surface compartment model (SCM) with a voltage sensitive channel, Bioelectrochem. Bioenerg., 10:451.CrossRefGoogle Scholar
  23. Blank, M., 1984, Properties of ion channels inferred from the surface compartment model (SCM), Bioelectrochem. Bioenera., 13:93.CrossRefGoogle Scholar
  24. Blank, M., 1987, Ionic processes at membrane surfaces: the role of electrical double layers in electrically stimulated ion transport, in ” Mechanistic Approaches to Interaction of Electromagnetic Fields with Living Systems”, M. Blank, and E. Findl, eds., Plenum Press, New York.Google Scholar
  25. Blank, M., 1987, The influence of surface charge on oligomeric reactions as a basis for channel dynamics, in “ Mechanistic Approaches to Interaction of Electromagnetic Fields with Living Systems”, M. Blank, and E. Findl, eds., Plenum Press, New York.Google Scholar
  26. Blackman, C. F., Elder, J. A., Weil, C. M., Benane, S. G., Eichinger, D. C., and House, D. E., 1979, Induction of calcium ion efflux from brain tissue by radiofrequency radiation: effects of modulation, frequency and field strength, Radio Sci., 14(6S): 93.CrossRefGoogle Scholar
  27. Blackman, C. F., Benane, S. G., Elder, J. A., House, D. E., Lampe, J. A., and Faulk, J. M., 1980, Induction of calcium ion efflux from brain tissue by radiofrequency radiation: effect of sample number and modulation frequency on the power density window, Bioelectromag., 1:35.CrossRefGoogle Scholar
  28. Blackman, C. F., Benane, S. G., Rabinowitz, J. R., House, D. E., and Joines, W. T., 1985, A role for the magnetic field in the radiation-induced efflux of calcium ions from brain tissue in vitro, Bioelectromag., 6:327.CrossRefGoogle Scholar
  29. Bond, J. D., and Wyeth, N. C., 1986, Are membrane microwave effects related to a critical phase transition?, J. Chem. Phys., 85(12): 7377.CrossRefGoogle Scholar
  30. Bond, J. D., and Wyeth, N. C., 1987, Membrane, electromagnetic fields, and critical phenomena, in: “Mechanistic Approaches to Interaction of Electromagnetic Fields with Living Systems”, M. Blank, and E. Findl, eds., Plenum Press, New York.Google Scholar
  31. Caddemi, A., Tamburello, C., Zanforlin, L., and Torregrossa, V., 1986, Microwave effects on isolated chick embryo hearts, Bioelectromag., 7:359.CrossRefGoogle Scholar
  32. Cain, C.A., 1980, A theoretical basis for microwave and RF field effects on excitable cellular membranes, IEEE Trans. MTT. 28:142.CrossRefGoogle Scholar
  33. Cain, CA., 1981, Biological effects of oscillating electric fields: role of voltage sensitive ion channels, Bioelectromag., 2:23.CrossRefGoogle Scholar
  34. Cevc, G., Marsh, D., 1987, “Phospholipid bilayers: physical principles and models,”, John Wiley & Sons, New York.Google Scholar
  35. Chiabrera, A., Grattarola, M., and Viviani, R., 1984, Interaction between electromagnetic fields and cells: Microelectrophoretic effect on ligands and surface receptors, Bioelectromag., 5:173.CrossRefGoogle Scholar
  36. Chiabrera, A., Nicolini, C., and Schwan, H.P., 1985a, “Interaction Between Electromagnetic Fields and Cells,” Plenum Press, New York.Google Scholar
  37. Chiabrera, A., Bianco, B., Caratozzolo, F., Giannetti, G., Grattarola, M., and Viviani, R., 1985b, Electric and magnetic field effects on ligand binding to the cell membrane, in: “Interaction between Electromagnetic Fields and Cells”, A. Chiabrera, C. Nicolini, and H.P. Schwan, eds., Plenum Press, New York.Google Scholar
  38. Chiabrera, A., Gyebyi, K., Kaufman, J., Ryaby, J., Smith Sonneborn, J., and Pilla, A.A., 1986, Lorentz magnetic force effect on biological systems: application to Paramecium, 6th Annual Meet. of BRAGS, (Abstr.), Utrecht, The Netherlands).Google Scholar
  39. Chiabrera, A., and Bianco, B., 1987, The role of the magnetic field in the em interaction with ligand binding, in “ Mechanistic Approaches to Interaction of Electromagnetic Fields with Living Systems”, M. Blank, and E. Findl, eds., Plenum Press, New York.Google Scholar
  40. Collin, R. E., 1966, “Foundations for Microwave Engineering”, Mc Graw-Hill, New York.Google Scholar
  41. D’Inzeo, G., Bernardi, P., Eusebi, F., Grassi, F., Tamburello, C., and Zani, B.M, 1988, Effects of microwaves on the acetylcholine-induced channels in cultured chick myotubes, Bioelectromag., 9:363.CrossRefGoogle Scholar
  42. Durney, C. H., Rushforth, G. K., and Anderson, A. A., 1988, Resonant AC-DC magnetic fields: calculated response, Bioelectromag., 9:315.CrossRefGoogle Scholar
  43. Durney, C. H., Anderson, A. A., and Rushforth, G. K., 1987, Calculated biological response to resonant DC-AC magnetic fields, 9th Annual Meet, of Bioelectromag. Soc., (Abstr.), Portland, USA).Google Scholar
  44. Dutta, S. K., Subramoniam, A., Ghosh, B., and Parshad, R., 1984, Microwave radiation-induced calcium ion efflux from human neuroblastoma cells in culture, Bioelectromag., 5:71.CrossRefGoogle Scholar
  45. Foster, K. R., and Schwan, H. P., 1986, Dielectric properties of tissues, in: “CRC Handbook of Biological Effects of Electromagnetic Fields”, C. Polk, and E. Postow, eds., CRC Press, Boca Raton.Google Scholar
  46. Fröhlich, H., 1950, “Theory of Dielectrics: Dielectric Constant and Dielectric Loss”, Oxford University Press, London.Google Scholar
  47. Galvin, M. J., and McRee, D. I., 1986, Cardiovascular, hematologic and biochemical effects of acute ventral exposure of conscious rats to 2450-MHz (CW) microwave radiation, Bioelectromag., 7:223.CrossRefGoogle Scholar
  48. Genzel, L., Kremer, F., Poglitsch, A., and Bechtold, G., 1983, Relaxation processes on a picosecond time scale in hemoglobin and poly (L-Alanine) observed by millimeterwave spectroscopy, Biopolymers, 22:1715.PubMedCrossRefGoogle Scholar
  49. Halle, B., 1988, On the cyclotron resonance mechanism for magnetic field effects on transmembrane ion conductivity, Bioelectromag., 9:381.CrossRefGoogle Scholar
  50. Hille, B., 1984, “Ionic Channels of Excitable Membranes;” Sinauer Associates Inc., Sunderland.Google Scholar
  51. Kaczmarek, L. K., and Adey, W. R., 1974, Weak electric gradients change ionic and transmitter fluxes in cortex, Brain. Res., 66:537.CrossRefGoogle Scholar
  52. Kremer, F., Poglitsh, A., and Genzel, L., 1984, Picosecond relaxations in proteins and biopolymers observed by MM-wave spectroscopy, in: “Nonlinear Electrodynamics in Biological Systems,” W. R. Adey, and A. F. Lawrence, eds., Plenum Press, New York.Google Scholar
  53. Lai, H., Horita, A., and Guy, A. W., 1988, Acute low-level microwave exposure and central cholinergic activity: studies on irradiation parameters, Bioelectromag., 9:355.CrossRefGoogle Scholar
  54. Liboff, A. R., 1985, Cyclotron resonance in membrane transport, in: “Interaction Between Electromagnetic Fields and Cells”, A. Chiabrera, C. Nicolini, and H. P. Schwan, eds., Plenum Press, New York.Google Scholar
  55. Liboff, A. R., and McLeod, B. R., 1988, Kinetics of channelized membrane ions in magnetic fields, Bioelectromag., 9:39.CrossRefGoogle Scholar
  56. Liburdy, R. P., Penn, A., 1984, Microwave bioeffects in the erytrocyte are temperature and pO dependent: cation permeability an protein shedding occur at the membrane phase transition, Bioelectromag., 5:283.CrossRefGoogle Scholar
  57. Liburdy, R. P., 1985, Evidence that microwave stimulate free radical production: autooxidation of hemoglobin to produce superoxide, 7th Annual Meet, of Bioelectromag. Soc., (Abstr.), San Francisco, USA).Google Scholar
  58. Liburdy, R. P., 1986, Microwave associated protein shedding in human herythrocite: quantitative HPLC analysis, 8th Annual Meet, of Bioelectromag. Soc., (Abstr.), Madison, USA).Google Scholar
  59. Lin, J. C., 1989, “Electromagnetic Interaction with Biological System,” Plenum Press, New York.Google Scholar
  60. Lords, J. L., Durney, C. H., Borg, A. M., and Tinney, C. E., 1973, Rate effects in isolated hearts induced by microwave irradiation, IEEE Trans. MTT, 21:834.CrossRefGoogle Scholar
  61. McLeod, B. R., and Liboff, A. R., 1986, Dynamic characteristics of membrane ions in multifield configurations of low frequency electromagnetic radiation, Bioelectromag., 7:177.CrossRefGoogle Scholar
  62. Merritt, J. G., Shelton, w. S., and Chamnes, A. F., 1982, Attempt to alter 45Ca2+ binding to brain tissue with pulse-modulated microwave energy, Bioelectromag., 3:475.CrossRefGoogle Scholar
  63. Michaelson, S. M., and Lin, J. C., 1987, “Biological Effects and Health Implications of Radiofrequency Radiation,” Plenum Press, New York.Google Scholar
  64. Milazzo, G., 1985, Bioelectrochemistry and Bioelectromagnetism, Bioelectrochem. and Bioenerg., 14:5.CrossRefGoogle Scholar
  65. Papahad jopoulos, D., Jacobson, K., Nir, S., and Isac, T., 1973, Phase transitions in phospholipid vesicles. Flourescence polarization and permeability measurements concerning the effect of temperature and cholesterol, Biochim. Biophys. Acta, 311:330.CrossRefGoogle Scholar
  66. Pethig, R., 1979, “Dielectric and Electronic Properties of Biological Materials,” John Wiley & Sons, Chichester. Philippova, T. M., Novoselov, V. I., Bystrova, M. F., and Alekseev, S. I., 1988, Microwave effects on champhor binding to rat olfactory epitelium, Bioelectromag., 9:347.Google Scholar
  67. Pickard, W. F., and Rosenbaum, F. J., 1978, Biological effects of microwaves at the membrane level: two possible athermal electrophysiological mechanisms and a proposed experimental test, Math. Biosci., 39:235.CrossRefGoogle Scholar
  68. Pilla, A. A., Chiabrera, A., Kaufman, J. J., and Ryaby J. T., 1987, A unified electrochemical approach to electrical and magnetic modulation of biological processes: application to the Paramecium ciliary movement, 9th Annual Meet. of Bioelectromag. Soc., (Abstr.) F-6, Portland, USA).Google Scholar
  69. Polk, C., and Postow, E., 1986, “Handbook of Biological Effects of Electromagnetic Fields,” CRC Press, Boca Raton, California.Google Scholar
  70. Reichl, L. E., 1980, “A Modern Course in Statistical Physics,” University of Texas, Austin.Google Scholar
  71. Sandblom, J., Teander, S., and Baltzer, P., 1985, The effect of microwave radiation on the stability and formation of gramicidin A channels in lipid bilayer membranes, Proc. of XIV ICMBE, Espoo, Finland).Google Scholar
  72. Scherer, P.G., and Seelig, J, 1987, Reorientation of lipid head groups at membrane-water interface, EMBO J., 6:2915.PubMedGoogle Scholar
  73. Seaman, R., and Wachtel, H., 1978, Slow and rapid response to CW and pulsed microwave radiation by individual Aplysia pacemakers, J. Microwave Power, 13:77.Google Scholar
  74. Seaman, R., Ajer, R. K., and DeHaan, R. L., 1982, Changes in cardiac-cell membrane noise during microwave exposure, Proc. of the IEEE-MTT Symp., 1:436.Google Scholar
  75. Seelig, J., Macdonald, P.M., and Scherer, P.G., 1987, Phospholipid head groups as sensors of electric charge in membranes, Biochem., 24:7535.Google Scholar
  76. Shepherd, J. C. W., and Büldt, G., 1978, Dielectric measurements on reorientation rates in lipid head groups, Biochim. Biophys. Acta, 514:83.PubMedCrossRefGoogle Scholar
  77. Sheridan, J. P., Gaber, B. P., Cavatorta, F, and Schoen, P. E., 1979, Molecular level effects of microwaves on natural and model membranes: a Raman spectroscopic investigation, in, “Natl. Radio Science Meet, and Bioelectromag. Symp.”, L.S. Taylor, and A. Y. Cheung, eds, Seattle, University of Washington).Google Scholar
  78. Smith, S. D., McLeod, B. R., Liboff, A. R., and Cooksey, K., 1987, Calcium cyclotron resonance and diatom mobility, Bioelectromag., 8:218.CrossRefGoogle Scholar
  79. Thomas, J. R., Schrot, J., and Liboff, A. R., 1987, Lowintensity magnetic fields alter operant behavior in rats, Bioelectromag., 7:349.CrossRefGoogle Scholar
  80. Tinney, C. E., Lords, J. L., and Durney, C. H., 1976, Rate effects in isolated turtle hearts induced by microwave irradiation, IEEE Trans. MTT, 24:18.CrossRefGoogle Scholar
  81. von Hippel, A. R., 1954, “Dielectrics and Waves”, J. Wiley & Sons, New York.Google Scholar
  82. Wachtel, H., Seaman, R., and Joines, W., 1975, Effects of lowintensity microwaves on isolated neurons, Ann. N.Y. Acad. Sci., 247: 46.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Paolo Bernardi
    • 1
  • Guglielmo D’Inzeo
    • 1
  1. 1.Department of ElectronicsUniversity of Rome “La Sapienza”RomeItaly

Personalised recommendations