The Atomistic Structure of Silicon Clusters and Crystals: From the Finite to the Infinite

  • James R. Chelikowsky


One of the most fundamental problems of materials science is to describe the microscopic structure of condensed matter. For crystalline matter, this problem can be viewed as “solved in principle”, as one can now accurately determine the structure of simple crystals. For example, the structure of virtually all elemental solids can now be determined from first principles1. However, for large clusters of atoms without periodic symmetry, few good methods, either experimental or theoretical, exist for describing the structure of such systems.


Large Cluster Lower Energy Structure Diamond Structure Silicon Cluster Quantum Mechanical Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.R. Chelikowsky and S.G. Louie, Phys. Rev. B29:3490 (1984), C.T. Chan, D. Vanderbilt and S.G. Louie, Phys. Rev. B33:2455 (1986). J.R. Chelikowsky and M.Y. Chou, Phys. Chem Minerals, 14:308 (1987) and references therein.Google Scholar
  2. 2.
    K. Raghavachari, J. Chem. Phys. 83:3520 (1985), ibid, 84:5672 (1986) and to be published.CrossRefGoogle Scholar
  3. 3.
    D. Tomanek and M. Schlüter, Phys. Rev. Lett. 56:1055 (1986), Phys. Rev. B, 36:1208 (1987).CrossRefGoogle Scholar
  4. 4.
    J.R. Chelikowsky and R. Redwing, Solid State Comm. 64:843 (1987).CrossRefGoogle Scholar
  5. 5.
    J.R. Chelikowsky, Phys. Rev. Lett. 60:2669 (1988).CrossRefGoogle Scholar
  6. 6.
    F. Stillinger and T. Weber, Phys. Rev. B31:5262 (1985).Google Scholar
  7. 7.
    R. Biswas and D.R. Hamann, Phys. Rev. Lett. 55:2001 (1985); Phys. Rev. B36:6434 (1987).CrossRefGoogle Scholar
  8. 8.
    J. Tersoff, Phys. Rev. Lett. 56:632 (1986).CrossRefGoogle Scholar
  9. 9.
    B.W. Dodson, Phys. Rev. B35:2795 (1987).Google Scholar
  10. 10.
    M.I. Baskes, Phys. Rev. Lett. 59:2666 (1987).CrossRefGoogle Scholar
  11. 11.
    J.R. Chelikowsky, J.C. Phillips, M. Kamal and M. Strauss, Phys. Rev. Lett. 62:292 (1989).CrossRefGoogle Scholar
  12. 12.
    See D.J. Chadi, Phys. Rev. B29:785 (1984) and references therein for a general description of this technique applied to semiconductor surfaces.Google Scholar
  13. 13.
    For details see Refs. 7, 9 and 14.Google Scholar
  14. 14.
    P.C. Kelores and J. Tersoff, Phys. Rev. Lett. 61:562 (1988).CrossRefGoogle Scholar
  15. 15.
    M.T. Yin and M.L. Cohen, Phys. Rev. B26:5668 (1982).Google Scholar
  16. 16.
    S. Saito, S. Oshishi and S. Sugaro, Phys. Rev. B33:7036 (1986).Google Scholar
  17. 17.
    J.L. Elkind, J.M. Alford, F.D. Weiss, R.T. Laaksonen, and R.E. Smalley, J. Chem. Phys. 87:2397 (1987).CrossRefGoogle Scholar
  18. 18.
    J.C. Phillips, J. Chem. Phys. 88:2090 (1988).CrossRefGoogle Scholar
  19. 19.
    E. Blaisten-Barojas and D. Levesque, Phys. Rev. B34:3910 (1986).Google Scholar
  20. 20.
    B. Feuston, R.K. Kalia and P. Vashista, Phys. Rev. B37:6297 (1988).Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • James R. Chelikowsky
    • 1
  1. 1.Department of Chemical Engineering and Materials Science, Minnesota Supercomputer InstituteUniversity of MinnesotaMinneapolisUSA

Personalised recommendations