Advertisement

A Computational Metallurgical Approach to the Electronic Properties and Structural Stability of Intermetallic Compounds

  • A. J. Freeman
  • T. Hong
  • J.-h. Xu

Abstract

There is more and more the growing recognition that technological advances depend strongly on a thorough understanding of the thermodynamic, mechanical, and electronic properties of materials. These, in turn, depend on our predictive ability regarding these properties. Understanding the structure and stability of the phases of compounds and alloys is an area of vital importance to materials science and technology. Such an understanding is starting to emerge from our first steps into carrying out all-electron quantum mechanical investigations on materials of aerospace interest. Briefly put, our emphasis has been on obtaining an understanding of the effects of alloying on bonding, crystal structure and phase stability of structural materials and to use this information to help design new alloy systems — in close collaboration with experimental efforts at a number of laboratories. In this paper, a brief indication is given of the progress made in a number of illustrative areas.

Keywords

Grand Partition Function Ternary Addition Ground State Density Independent Slip System Bond Breaking Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Kohn and L.J. Sham, Phys. Rev., 140: A1133 (1965).CrossRefGoogle Scholar
  2. 2.
    J.H. Westbrook, ed. Intermetallic Compounds (Wiley, New York, 1967)Google Scholar
  3. 3.
    K. Aoki and O. Izumi, Nippon Kinzok Takkaishi, 43:1190 (1979); C.T. Liu and C.C. Koch, in Proceedings of a Public Workshop on Trends in Critical Materials Requirements for Steels of the Future: Conservation and Substitution Technology for Chromium (NBSIR-83-2679-2, Washington, DC, June 1983)Google Scholar
  4. 4.
    N.R. Bernhoeft, I. Cole, G.G. Lonzarich, and G.L. Squires, J. Appl. Phys. 53:8207 (1982); T.I. Sigfusson, N.R. Bernhoeft, and G.G. Lonzarich, J. Appl. Phys. 53:8207 (1982); T.I. Sigfusson, N.R. Bernhoeft, and G.G. Lonzarich, J. Phys., F14:2141 (1984) and references therein.CrossRefGoogle Scholar
  5. 5.
    D. Hackenbracht, and J. Kubier, J. Phys., F10: 427 (1980).CrossRefGoogle Scholar
  6. 6.
    J.J.M. Buiting, J. Kubler, and F.M. Mueller, J. Phys. F13:L179 (1983).CrossRefGoogle Scholar
  7. 7.
    B.I. Min, T. Oguchi, H.J.F. Jansen, and A.J. Freeman, J. Mag. Magn. Matls., 54–57: 1091 (1986).CrossRefGoogle Scholar
  8. 8.
    J.-H. Xu, T. Oguchi, and A.J. Freeman, Phys. Rev. 36:4186 (1987).CrossRefGoogle Scholar
  9. 9.
    O.K. Andersen, Phys. Rev., B12:3060 (1975).Google Scholar
  10. 10.
    J.-H. Xu, A.J. Freeman and T. Oguchi, (to be published)Google Scholar
  11. 11.
    J.H. Westbrook, Ordered Alloys. Physical Metallurgy and Structural Applications, Claitors, Baton Rouge (1970), p. 1; D.M. Dimiduk, Solid Solution Strengthening of Ordered Ni3Al, (unpublished).Google Scholar
  12. 12.
    J.-H. Xu, T. Oguchi, and A.J. Freeman, Phys. Rev., B35: 6940 (1987).Google Scholar
  13. 13.
    R.F. Decker and J.R. Mihalisin, Trans. ASM, 62: 481 (1969).Google Scholar
  14. 14.
    T. Hong, T.J. Watson-Yang, A.J. Freeman and T. Oguchi, Bull. Am. Phys. Soc., 32:No. 3, p. 413 (1987).Google Scholar
  15. 15.
    R. Podloucky, R., H.J.F. Jansen, X.Q. Guo and A.J. Freeman, Phys. Rev. B., (to appear)Google Scholar
  16. 16.
    R. Kikuchi, Phys. Rev., 81:988 (1951).CrossRefGoogle Scholar
  17. 17.
    See, eg., D. de Fontaine in “Alloy Phase Diagrams”, eds. L.H. Bennett, T.B. Massalski, and B.C. Giessen (North-Holland, 1983), p. 149Google Scholar
  18. 18.
    A.J. Freeman, C.L. Fu, and J.I. Lee, Bull. Am. Phys. Soc., 32: No. 3, (1987) p. 772.Google Scholar
  19. 19.
    J.-H. Xu, A.J. Freeman, and T. Oguchi, (to be published)Google Scholar
  20. 20.
    P Veyssiere, Phil. Mag. 50:189 (1984).CrossRefGoogle Scholar
  21. 21.
    T. Hong and A.J. Freeman, (to be published).Google Scholar
  22. 22.
    D.M. Shah et al. (unpublished).Google Scholar
  23. 23.
    H.L. Lipsitt (unpublished).Google Scholar
  24. 24.
    D.E. Polk (unpublished).Google Scholar
  25. 25.
    A. Ball, et al., Acta Metallurgica 14: 1349 (1966); 14: 1527 (1966).CrossRefGoogle Scholar
  26. 26.
    R. von Mises, Z. Angew. Math. Mech. 8:161 (1928).CrossRefGoogle Scholar
  27. 27.
    C.C. Law et al. (interim report).Google Scholar
  28. 28.
    D.B. Miracle et al., Materials Research Society Symp. Proc. on High Temperature Ordered Intermetallic Alloys (Boston, 1988).Google Scholar
  29. 29.
    J. Xu and A.J. Freeman (to be published).Google Scholar
  30. 30.
    D.I. Potter, Mater. Sci. Eng. 5, 201 (1969/1970).Google Scholar
  31. 31.
    R. Darolia et al., Materials Research Society Symp. Proc. on High Temperature Ordered Intermetallic Alloys (Boston, 1988).Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • A. J. Freeman
    • 1
  • T. Hong
    • 1
  • J.-h. Xu
    • 2
  1. 1.Department of Physics and AstronomyNorthwestern UniversityEvanstonUSA
  2. 2.Shanghai Institute of MetallurgyChinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations