Molecular Dynamics Simulations of Materials: Beyond Pair Interactions

  • Uzi Landman
  • W. D. Luedtke


Basic understanding of the structure and dynamics of materials and their properties often requires knowledge on a microscopic level of the underlying energetics and interaction mechanisms, whose consequences we observe and measure. Answers to material science problems are in principle possible, embodied in solutions to the Schrodinger equation subject to the appropriate boundary conditions. However, the full irnplementation of such a program is impossible for most (one may dare say all) materials science and condensed matter systems and we must resort to various approximations and simplification. The degree of microscopic detail with which we probe physical phenomena is determined mainly by the resolution of our experimental tools, by the ability to found the theoretical analysis on microscopic principles and by the complexity, hence solubility, of the model. In many situations the level of complexity of the model, which is necessary in order to describe faithfully the physical phenomena, is such that analytical approaches fail to provide a solution. In these situations, which include the majority of material systems and phenomena, the use of computer-based methods [1–7] is essential.


Amorphous Silicon Effective Medium Theory Grown Film Embed Atom Method Molecular Beam Epitaxial Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    U. Landman et al., Mat. Res. Soc. Symp. Proc. 63:273 (1985).CrossRefGoogle Scholar
  2. 2.
    F.F. Abraham, Adv. Phys. 35:1 (1986); J. Vac. Sci. Technol. B2:534 (1984).CrossRefGoogle Scholar
  3. 3.
    MRS Bull. Volume XIII (2), February 1988, p. 14–39.Google Scholar
  4. 4.
    U. Landman, R.N. Barnett, C.L. Cleveland, J. Luo, D. Scharf and J. Jortner, in: “Few-Body Systems and Multiparticle Dynamics”, ed., D.A. Micha, AIP Conf. Proc. 162 (AIP, New York, 1987), p. 200.Google Scholar
  5. 5.
    D.W. Heerman, in: “Computer Simulation Methods” (Springer, Berlin, 1986).CrossRefGoogle Scholar
  6. 6.
    “Computer Simulations of Solids”, eds. C.R.A. Catlow and W.C. Machord (Springer, Berlin, 1982).Google Scholar
  7. 7.
    U. Landman, in: “Computer Simulation Studies in Condensed Matter Physics: Recent Developments”, eds., D.P. Landau, K.K. Mon and H.-B. Schuttler (Springer, Berlin, 1988), p. 108.CrossRefGoogle Scholar
  8. 8.
    G.C. Maitland, M. Rigby, E.B. Smith and W.A. Wakeham, in: “Intermolecular Forces” (Clarendon, Oxford, 1981).Google Scholar
  9. 9.
    M.J. Sangster and M. Dixson, Adv. Phys. 25: 247 (1976).CrossRefGoogle Scholar
  10. 10.
    P.N. Keating, Phys. Rev. 145:637 (1966).CrossRefGoogle Scholar
  11. 11.
    F.H. Stillinger and T.A. Weber, Phys. Rev. B31:5262 (1985).Google Scholar
  12. 12.
    R. Biswas and D.R. Hamann, Phys. Rev. Lett. 55:2001 (1985).CrossRefGoogle Scholar
  13. 13.
    T. Tersoff, Phys. Rev. B37:6991 (1988).Google Scholar
  14. 14.
    See, e.g., W.A. Harrison, Pseudopotentials in the Theory of Metals (Benajamin, Reading, Mass., 1966).Google Scholar
  15. 15.
    R.N. Barnett, C.L. Cleveland and U. Landman, Phys. Rev. Lett. 54:1679 (1985).CrossRefGoogle Scholar
  16. 16.
    R.N. Barnett, C.L. Cleveland and U. Landman, Phys. Rev. Lett. 55:2035 (1985).CrossRefGoogle Scholar
  17. 17.
    K.W. Jacobsen, J.K. Norskov and M.J. Puska, Phys. Rev. B 35:7423 (1987).CrossRefGoogle Scholar
  18. 18.
    See M. Basklas, M. Daw, B. Dodson and S. Foils in ref. 3, p. 28.Google Scholar
  19. 19.
    P. Stoltze, J.K. Norskov and U. Landman, Phys. Rev. Lett. 61:440 (1988).CrossRefGoogle Scholar
  20. 20.
    D.E. Polk, J. Non-Cryst. Solids 5:365 (1971).CrossRefGoogle Scholar
  21. 21.
    D. Henderson and F. Herman, J. Non-Cryst. Solids 8-10:359 (1972).CrossRefGoogle Scholar
  22. 22.
    D. Henderson, J. Non-Cryst. Solids 16:317 (1974).CrossRefGoogle Scholar
  23. 23.
    L. Guttman, Phys. Rev. B 23:1866 (1981).CrossRefGoogle Scholar
  24. 24.
    F. Wooten, K. Winer, and D. Weaire, Phys. Rev. Lett. 54:1392 (1985).CrossRefGoogle Scholar
  25. 25.
    J.Q. Broughton and X.P. Li, Phys. Rev. B 35:9120 (1987).CrossRefGoogle Scholar
  26. 26.
    M.D. Kluge, J.R. Ray, and A. Rahman, Phys. Rev. B 36:4234 (1987).CrossRefGoogle Scholar
  27. 27.
    R. Biswas, G.S. Grest and C.M. Soukoulis, Phys. Rev. B 36:7437 (1987).CrossRefGoogle Scholar
  28. 28.
    W.D. Luedtke and U. Landman, Phys. Rev. B 37:4656 (1988).CrossRefGoogle Scholar
  29. 29.
    K. Ding and H.C. Andersen, Phys. Rev. B 34:6987 (1986).CrossRefGoogle Scholar
  30. 30.
    F.F. Abraham and I.P. Batra, Surf. Sci. 163:L752 (1985).CrossRefGoogle Scholar
  31. 31.
    I.P. Batra, F.F. Abraham and S. Ciraci, Phys. Rev. B 35:9552 (1987).CrossRefGoogle Scholar
  32. 32.
    U. Landman, W.D. Luedtke, R.N. Barnett, C.L. Cleveland, M.W. Ribarsky, E. Arnold, S. Ramesh, H. Baumgart, A. Martinez, and B. Khan, Phys. Rev. Lett. 56:155 (1986).CrossRefGoogle Scholar
  33. 33.
    F.F. Abraham and J.Q. Broughton, Phys. Rev. Lett. 56:734 (1986).CrossRefGoogle Scholar
  34. 34.
    U. Landman, W.D. Luedtke, M.W. Ribarsky, R.N. Barnett, and C.L. Cleveland Phys. Rev. B 37:4637,4647 (1988).CrossRefGoogle Scholar
  35. 35.
    M. Parrinello and A. Rahman, J. Appl. Phys. 52:7182 (1981); see also M.W. Ribarsky and U. Landman, Phys. Rev. B 38:9522 (1988).CrossRefGoogle Scholar
  36. 36.
    W.A. Kamitakahara, C.M. Soukoulis, H.R. Shanks, U. Buchenau and G.S. Grest, Phys. Rev. B 36:6539 (1987).CrossRefGoogle Scholar
  37. 37.
    In calculating the coordination numbers and average angles, cutoff distances (first minimum in g(r), see Fig. 4) of 2.87Å at room temperature and 2.93 Å at the higher temperature were used. The a’ system [28] is better relaxed at the higher temperature.Google Scholar
  38. 38.
    See citations in reference 32.Google Scholar
  39. 39.
    See also earlier MD studies of liquid-phase epitaxy: U. Landman, R.N. Barnett, C.L. Cleveland and R.H. Rast, J. Vac. Sci. Technol. A3:1574 (1985); U. Landman, C.L. Cleveland and C.S. Brown, Phys. Rev. Lett. 45:2032 (1980) and in: “Nonlinear Phenomena of Phase Transitions and Instabilities”, ed. T. Riste (Plenum, NY, 1982), p. 379.Google Scholar
  40. 40.
    M. Faraday, Phil. Trans. 147:145 (1857).CrossRefGoogle Scholar
  41. 41.
    For a recent review see H.J. Leamy, G.H. Gilmer, and A.G. Dirks, in “Current Topics in Materials Science”, ed. E. Kaldis (North-Holland, Amsterdam, 1980), Vol. 6, Chap. 4.Google Scholar
  42. 42.
    B.R. Appelton, R.A. Zuhr, T.S. Noggle, N. Herbots and S.J. Pennycook in “Beam-Solid Interactions and Transient Processes”, eds., M.O. Thompson, S.T. Picraux and J.S. Williams (MRS. Symp. Proc. 74, Pittsburgh, PA, 1987), p. 45.Google Scholar
  43. 43.
    M. Schneider, I.K. Schuller and A. Rahman, Phys. Rev. B36:1340 (198.Google Scholar
  44. 44.
    P.A. Taylor and B.W. Dodson, Phys. Rev. B36:1355 (1987); B.W. Dodson, Phys. Rev. B36:1068 (1987).Google Scholar
  45. 45.
    W.D. Luedtke and U. Landman, Phys. Rev. B (to be published, 1988).Google Scholar
  46. 46.
    See review by J.F. Van der Veen, B. pluis and A.W. Denier van der Gon in “Chemistry and Physics of Solids”, Vol. VII (Springer, Berlin, 1988).Google Scholar
  47. 47.
    J.W.M. Frenken and J.F. van der Veen, Phys. Rev. Lett. 54:134 (1985); B. Pluris, A.W. van der Gon, J.W.M. Frenken and J.F. van der Veen, Phys. Rev. Lett. (1987).CrossRefGoogle Scholar
  48. 48.
    P. von Blackenhagen, W. Schommer and V. Voegel, J. Vac. Sci. Technol. A5: 649 (1987).Google Scholar
  49. 49.
    G. Binnig and H. Rohrer, IBM J. Res. Develop. 30:355 (1986).Google Scholar
  50. 50.
    G. Binnig, C.F. Quate and Ch. Gerber, Phys. Rev. Lett. 56:930 (1986).CrossRefGoogle Scholar
  51. 51.
    P.H. Hansma and J. Tersoff, J. Appl. Phys. 61:R1 (1986).CrossRefGoogle Scholar
  52. 52.
    C.M. Mate, G.M. McClelland, R. Erlandsson and S. Chiang, Phys. Rev. Lett. 59:1942 (1987).CrossRefGoogle Scholar
  53. 53.
    U. Landman, W.D. Luedtke and A. Nitzan (Surface Sci., in press); see also ref. 7 and U. Landman, W.D. Luedtke and M.W. Ribarsky, J Vac. Sci. Technol., (to be published).Google Scholar
  54. 54.
    J.M. Soler, A.M. Baro, N. Garcia and H. Rohrer, Phys. Rev. Lett. 57:444 (1986); see comment by J.B. Pethica, ibid 57:3235 (1986).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Uzi Landman
    • 1
  • W. D. Luedtke
    • 1
  1. 1.School of PhysicsGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations