Skip to main content

Molecular Dynamics Simulations of Materials: Beyond Pair Interactions

  • Chapter
Book cover Atomistic Simulation of Materials
  • 287 Accesses

Abstract

Basic understanding of the structure and dynamics of materials and their properties often requires knowledge on a microscopic level of the underlying energetics and interaction mechanisms, whose consequences we observe and measure. Answers to material science problems are in principle possible, embodied in solutions to the Schrodinger equation subject to the appropriate boundary conditions. However, the full irnplementation of such a program is impossible for most (one may dare say all) materials science and condensed matter systems and we must resort to various approximations and simplification. The degree of microscopic detail with which we probe physical phenomena is determined mainly by the resolution of our experimental tools, by the ability to found the theoretical analysis on microscopic principles and by the complexity, hence solubility, of the model. In many situations the level of complexity of the model, which is necessary in order to describe faithfully the physical phenomena, is such that analytical approaches fail to provide a solution. In these situations, which include the majority of material systems and phenomena, the use of computer-based methods [1–7] is essential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. U. Landman et al., Mat. Res. Soc. Symp. Proc. 63:273 (1985).

    Article  Google Scholar 

  2. F.F. Abraham, Adv. Phys. 35:1 (1986); J. Vac. Sci. Technol. B2:534 (1984).

    Article  CAS  Google Scholar 

  3. MRS Bull. Volume XIII (2), February 1988, p. 14–39.

    Google Scholar 

  4. U. Landman, R.N. Barnett, C.L. Cleveland, J. Luo, D. Scharf and J. Jortner, in: “Few-Body Systems and Multiparticle Dynamics”, ed., D.A. Micha, AIP Conf. Proc. 162 (AIP, New York, 1987), p. 200.

    Google Scholar 

  5. D.W. Heerman, in: “Computer Simulation Methods” (Springer, Berlin, 1986).

    Book  Google Scholar 

  6. “Computer Simulations of Solids”, eds. C.R.A. Catlow and W.C. Machord (Springer, Berlin, 1982).

    Google Scholar 

  7. U. Landman, in: “Computer Simulation Studies in Condensed Matter Physics: Recent Developments”, eds., D.P. Landau, K.K. Mon and H.-B. Schuttler (Springer, Berlin, 1988), p. 108.

    Chapter  Google Scholar 

  8. G.C. Maitland, M. Rigby, E.B. Smith and W.A. Wakeham, in: “Intermolecular Forces” (Clarendon, Oxford, 1981).

    Google Scholar 

  9. M.J. Sangster and M. Dixson, Adv. Phys. 25: 247 (1976).

    Article  CAS  Google Scholar 

  10. P.N. Keating, Phys. Rev. 145:637 (1966).

    Article  CAS  Google Scholar 

  11. F.H. Stillinger and T.A. Weber, Phys. Rev. B31:5262 (1985).

    Google Scholar 

  12. R. Biswas and D.R. Hamann, Phys. Rev. Lett. 55:2001 (1985).

    Article  CAS  Google Scholar 

  13. T. Tersoff, Phys. Rev. B37:6991 (1988).

    Google Scholar 

  14. See, e.g., W.A. Harrison, Pseudopotentials in the Theory of Metals (Benajamin, Reading, Mass., 1966).

    Google Scholar 

  15. R.N. Barnett, C.L. Cleveland and U. Landman, Phys. Rev. Lett. 54:1679 (1985).

    Article  CAS  Google Scholar 

  16. R.N. Barnett, C.L. Cleveland and U. Landman, Phys. Rev. Lett. 55:2035 (1985).

    Article  CAS  Google Scholar 

  17. K.W. Jacobsen, J.K. Norskov and M.J. Puska, Phys. Rev. B 35:7423 (1987).

    Article  CAS  Google Scholar 

  18. See M. Basklas, M. Daw, B. Dodson and S. Foils in ref. 3, p. 28.

    Google Scholar 

  19. P. Stoltze, J.K. Norskov and U. Landman, Phys. Rev. Lett. 61:440 (1988).

    Article  CAS  Google Scholar 

  20. D.E. Polk, J. Non-Cryst. Solids 5:365 (1971).

    Article  CAS  Google Scholar 

  21. D. Henderson and F. Herman, J. Non-Cryst. Solids 8-10:359 (1972).

    Article  CAS  Google Scholar 

  22. D. Henderson, J. Non-Cryst. Solids 16:317 (1974).

    Article  CAS  Google Scholar 

  23. L. Guttman, Phys. Rev. B 23:1866 (1981).

    Article  CAS  Google Scholar 

  24. F. Wooten, K. Winer, and D. Weaire, Phys. Rev. Lett. 54:1392 (1985).

    Article  CAS  Google Scholar 

  25. J.Q. Broughton and X.P. Li, Phys. Rev. B 35:9120 (1987).

    Article  CAS  Google Scholar 

  26. M.D. Kluge, J.R. Ray, and A. Rahman, Phys. Rev. B 36:4234 (1987).

    Article  CAS  Google Scholar 

  27. R. Biswas, G.S. Grest and C.M. Soukoulis, Phys. Rev. B 36:7437 (1987).

    Article  CAS  Google Scholar 

  28. W.D. Luedtke and U. Landman, Phys. Rev. B 37:4656 (1988).

    Article  CAS  Google Scholar 

  29. K. Ding and H.C. Andersen, Phys. Rev. B 34:6987 (1986).

    Article  CAS  Google Scholar 

  30. F.F. Abraham and I.P. Batra, Surf. Sci. 163:L752 (1985).

    Article  CAS  Google Scholar 

  31. I.P. Batra, F.F. Abraham and S. Ciraci, Phys. Rev. B 35:9552 (1987).

    Article  CAS  Google Scholar 

  32. U. Landman, W.D. Luedtke, R.N. Barnett, C.L. Cleveland, M.W. Ribarsky, E. Arnold, S. Ramesh, H. Baumgart, A. Martinez, and B. Khan, Phys. Rev. Lett. 56:155 (1986).

    Article  CAS  Google Scholar 

  33. F.F. Abraham and J.Q. Broughton, Phys. Rev. Lett. 56:734 (1986).

    Article  CAS  Google Scholar 

  34. U. Landman, W.D. Luedtke, M.W. Ribarsky, R.N. Barnett, and C.L. Cleveland Phys. Rev. B 37:4637,4647 (1988).

    Article  CAS  Google Scholar 

  35. M. Parrinello and A. Rahman, J. Appl. Phys. 52:7182 (1981); see also M.W. Ribarsky and U. Landman, Phys. Rev. B 38:9522 (1988).

    Article  CAS  Google Scholar 

  36. W.A. Kamitakahara, C.M. Soukoulis, H.R. Shanks, U. Buchenau and G.S. Grest, Phys. Rev. B 36:6539 (1987).

    Article  CAS  Google Scholar 

  37. In calculating the coordination numbers and average angles, cutoff distances (first minimum in g(r), see Fig. 4) of 2.87Å at room temperature and 2.93 Å at the higher temperature were used. The a’ system [28] is better relaxed at the higher temperature.

    Google Scholar 

  38. See citations in reference 32.

    Google Scholar 

  39. See also earlier MD studies of liquid-phase epitaxy: U. Landman, R.N. Barnett, C.L. Cleveland and R.H. Rast, J. Vac. Sci. Technol. A3:1574 (1985); U. Landman, C.L. Cleveland and C.S. Brown, Phys. Rev. Lett. 45:2032 (1980) and in: “Nonlinear Phenomena of Phase Transitions and Instabilities”, ed. T. Riste (Plenum, NY, 1982), p. 379.

    Google Scholar 

  40. M. Faraday, Phil. Trans. 147:145 (1857).

    Article  Google Scholar 

  41. For a recent review see H.J. Leamy, G.H. Gilmer, and A.G. Dirks, in “Current Topics in Materials Science”, ed. E. Kaldis (North-Holland, Amsterdam, 1980), Vol. 6, Chap. 4.

    Google Scholar 

  42. B.R. Appelton, R.A. Zuhr, T.S. Noggle, N. Herbots and S.J. Pennycook in “Beam-Solid Interactions and Transient Processes”, eds., M.O. Thompson, S.T. Picraux and J.S. Williams (MRS. Symp. Proc. 74, Pittsburgh, PA, 1987), p. 45.

    Google Scholar 

  43. M. Schneider, I.K. Schuller and A. Rahman, Phys. Rev. B36:1340 (198.

    Google Scholar 

  44. P.A. Taylor and B.W. Dodson, Phys. Rev. B36:1355 (1987); B.W. Dodson, Phys. Rev. B36:1068 (1987).

    Google Scholar 

  45. W.D. Luedtke and U. Landman, Phys. Rev. B (to be published, 1988).

    Google Scholar 

  46. See review by J.F. Van der Veen, B. pluis and A.W. Denier van der Gon in “Chemistry and Physics of Solids”, Vol. VII (Springer, Berlin, 1988).

    Google Scholar 

  47. J.W.M. Frenken and J.F. van der Veen, Phys. Rev. Lett. 54:134 (1985); B. Pluris, A.W. van der Gon, J.W.M. Frenken and J.F. van der Veen, Phys. Rev. Lett. (1987).

    Article  CAS  Google Scholar 

  48. P. von Blackenhagen, W. Schommer and V. Voegel, J. Vac. Sci. Technol. A5: 649 (1987).

    Google Scholar 

  49. G. Binnig and H. Rohrer, IBM J. Res. Develop. 30:355 (1986).

    CAS  Google Scholar 

  50. G. Binnig, C.F. Quate and Ch. Gerber, Phys. Rev. Lett. 56:930 (1986).

    Article  Google Scholar 

  51. P.H. Hansma and J. Tersoff, J. Appl. Phys. 61:R1 (1986).

    Article  Google Scholar 

  52. C.M. Mate, G.M. McClelland, R. Erlandsson and S. Chiang, Phys. Rev. Lett. 59:1942 (1987).

    Article  CAS  Google Scholar 

  53. U. Landman, W.D. Luedtke and A. Nitzan (Surface Sci., in press); see also ref. 7 and U. Landman, W.D. Luedtke and M.W. Ribarsky, J Vac. Sci. Technol., (to be published).

    Google Scholar 

  54. J.M. Soler, A.M. Baro, N. Garcia and H. Rohrer, Phys. Rev. Lett. 57:444 (1986); see comment by J.B. Pethica, ibid 57:3235 (1986).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Landman, U., Luedtke, W.D. (1989). Molecular Dynamics Simulations of Materials: Beyond Pair Interactions. In: Vitek, V., Srolovitz, D.J. (eds) Atomistic Simulation of Materials. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5703-2_45

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5703-2_45

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5705-6

  • Online ISBN: 978-1-4684-5703-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics