A New Method for Coupled Elastic-Atomistic Modelling

  • Stephan Kohlhoff
  • Siegfried Schmauder


Molecular Dynamics and Molecular Statics have become important tools for model investigations of crystal defects. In spite of the ever increasing computer power the size of the models which can be treated by these methods is very limited. Therefore, in order to avoid surface effects it is common practice to employ one of the following techniques:
  • periodic boundary conditions or

  • semidiscrete methods.


Crack Front Interatomic Potential Embed Atom Method Increase Computer Power Continuum Continuum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.E. Sinclair, J. Appl. Phys. 42:5321 (1971).CrossRefGoogle Scholar
  2. 2.
    P.C. Gehlen, J.P. Hirth, R.G. Hoagland, M.F. Kanninen, J. Appl. Phys. 43:3921 (1972).CrossRefGoogle Scholar
  3. 3.
    R.G. Hoagland, J.P. Hirth, P.C. Gehlen, Phil. Mag., 34:413 (1976).CrossRefGoogle Scholar
  4. 4.
    J.E. Sinclair, P.C. Gehlen, R.G. Hoagland, J.P. Hirth, J. Appl. Phys. 49:3890 (1978).CrossRefGoogle Scholar
  5. 5.
    C. Teodosiu, in: “Continuum Models of Discrete Systems 4”, O. Brulin, R.K.T. Hsieh, eds. (North Holland, 1981).Google Scholar
  6. 6.
    M.I. Baskes, C.F. Melius, W.D. Wilson in: “Interatomic Potentials and Crystalline Defects”, October 1980.Google Scholar
  7. 7.
    M. Mullins, M.A. Dokainish, Phil. Mag. 46:771 (1982).CrossRefGoogle Scholar
  8. 8.
    O.C. Zienkiewicz, “The Finite Element Method” (McGraw-Hill, London, 1977).Google Scholar
  9. 9.
    M.S. Daw, M.I. Baskes, Phys. Rev. Lett. 50:1285 (1983).CrossRefGoogle Scholar
  10. 10.
    C. Teodosiu, “Elastic Models of Crystal Defects” (Springer, 1982).Google Scholar
  11. 11.
    E. Kröner,, B.K. Datta, Z.f. Physik 196:203 (1966).CrossRefGoogle Scholar
  12. 12.
    A.C. Eringen, J. Appl. Phys. 54:4703 (1983).CrossRefGoogle Scholar
  13. 13.
    D. Kessel, E. Kröner, Z. Naturforsch 25a:1046 (1970).Google Scholar
  14. 14.
    R.A. Johnson, Phys. Rev. 134:2094 (1972).Google Scholar
  15. 15.
    G.C. Sih, H. Liebowitz, Mathematical theories of brittle fracture, in: “Fracture”, Vol. 2, (Academic Press, 1968).Google Scholar
  16. 16.
    M.W. Finnis, J.E. Sinclair, Phil. Mag., 50:45 (1984). Erratum ibid 53:161 (1986).Google Scholar
  17. 17.
    P.C. Gehlen, G.T. Hahn, M.F. Kannen, Scripta Metall. 6:1087 (1972).CrossRefGoogle Scholar
  18. 18.
    A.J. Markworth, L.R. Kahn, P.C. Gehlen, G.T. Hahn, Res Mechanica 2:141 (1981).Google Scholar
  19. 19.
    R.A. Johnson, Phys. Rev. 134:1329 (1964).CrossRefGoogle Scholar
  20. 20.
    B. deCelis, A.S. Argon, S. Yip, J. Appl. Phys. 54:4864 (1983).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Stephan Kohlhoff
    • 1
  • Siegfried Schmauder
    • 1
  1. 1.Institut für WerkstoffwissenschaftMax-Planck-Institut für MetallforschungStuttgartFederal Republic of Germany

Personalised recommendations