Defect Abundances and Diffusion Mechanisms in Diamond, SiC, Si and Ge

  • J. Bernholc
  • A. Antonelli
  • C. Wang
  • R. F. Davis
  • S. T. Pantelides


Many of the important properties of semiconductors are affected by the presence of native defects. These include diffusion of native atoms and impurities, electronic properties, structural rearrangements during growth or processing, etc. We have used local density theory and non-local pseudopotentials to study trends in the relative abundance of native defects and in self-diffusion (diffusion of native tracer atoms) in diamond, SiC, Si and Ge. Both point-defect-mediated diffusion and direct exchange of lattice atoms were considered. All calculations were carried out using the same methodology and similar convergence criteria.


Formation Energy Film Diamond Native Defect Direct Exchange Substitutional Defect 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Car, P.J. Kelly, A. Oshiyama, and S.T. Pantelides, Phys. Rev. Lett. 52:1814 (1984).CrossRefGoogle Scholar
  2. 2.
    R. Car, P.J. Kelly, A. Oshiyama, and S.T. Pantelides, Phys. Rev. Lett. 54:360 (1985).CrossRefGoogle Scholar
  3. 3.
    Y. Bar-Yam and J. Joannopoulos, Proc. 13th Intern. Cont. on Defects in Semi conductors, edited by L. C. Kimerling and J. M. Parsey Jr., in: “The Metallurgical Society of AIME”, New York, p. 261 (1985).Google Scholar
  4. 4.
    K.C. Pandey, Phys. Rev. Lett. 57:2287 (1986).CrossRefGoogle Scholar
  5. 5.
    See, for example, the Presentation Summaries of the Diamond Technology Initiative Symposium, 12–14 July 1988.Google Scholar
  6. 6.
    Y. Bar-Yam and J. Joannopoulos, Phys. Rev. Lett. 52, 1129 (1984); Phys. Rev. B30:1844(1984).CrossRefGoogle Scholar
  7. 7.
    Y. Bar-Yam, J. Joannopoulos, and S. T. Pantelides, to be published.Google Scholar
  8. 8.
    J. Bernholc, A. Antonelli, T. Del Sole, Y. Bar-Yam, and S. Pantelides, to be published.Google Scholar
  9. 9.
    C. Wang, J. Bernholc, and R. F. Davis, to be published.Google Scholar
  10. 10.
    A. Antonelli and J. Bernholc, to be published.Google Scholar
  11. 11.
    H. J. Kim and R. F. Davis, J. Electrochem. Soc.: Solid State Sci. and Techn. 133:2250 (1986).Google Scholar
  12. 12.
    M. Yamanaka, H. Daimon, E. Sakuma, S. Misawa, and S. Yoshida, J. Appl. Phys. 61:599(1986).CrossRefGoogle Scholar
  13. 13.
    D. P. Birnie, III, J. Am. Ceram. Soc. 60:C–33 (1986).Google Scholar
  14. 14.
    S. Kaneda, Y. Sakamoto, T. Mihara, and T. Tanaka, J. Cryst. Growth 81:536 (1987).CrossRefGoogle Scholar
  15. 15.
    D. Lazarus and N. H. Nachtrieb, in: “Solids under Pressure”, D. Paul and D. M. Warschauer, ed., McGraw-Hill, New York (1963).Google Scholar
  16. 16.
    S. M. Hu, in: “Atomic Diffusion in Semiconductors”, D. Shaw, ed, Plenum, New York (1973).Google Scholar
  17. 17.
    E. Nygren, M. J. Aziz, D. Turnbull, J. M. Poate, D. C. Jacobson, and R. Hull, Appl. Phys. Lett. 47:105 (1985).CrossRefGoogle Scholar
  18. 18.
    M. J. Aziz, E. Nygren, W. H. Christie, C. W. White, and D. Turnbull, Mat. Res. Symp. Proc. 36:101 (1985).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • J. Bernholc
    • 1
  • A. Antonelli
    • 1
  • C. Wang
    • 1
  • R. F. Davis
    • 2
  • S. T. Pantelides
    • 3
  1. 1.Departments of PhysicsNorth Carolina State UniversityRaleighUSA
  2. 2.Departments of Materials Science and EngineeringNorth Carolina State UniversityRaleighUSA
  3. 3.IBM T. J. Watson Research CenterYorktown HeightsUSA

Personalised recommendations