Advertisement

Application of the Tight-Binding Bond Model

  • M. W. Finnis

Abstract

The tight-binding model has received a lot of attention recently as a model for the total energy of metals and semiconductors which can be used for the calculation of minimum energy structures. Chadi (1979a, 1979b, 1984) pioneered the use of k-space methods for atomistic relaxation in semi-conductors with the tight-binding model. The purpose of the present paper is to summarize the present state of the art in real-space, with emphasis on the d-bonded transition metals, the tight-binding description of which was originally introduced and developed by Friedel and coworkers.

Keywords

Atomistic Simulation Minimum Energy Structure Moment Model Atomistic Relaxation Embed Atom Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackland, G.J. and Finnis, M.W., 1986, Phil. Mag. A, 54:301.CrossRefGoogle Scholar
  2. Ackland, G.J., Finnis, M.W. and Vitek, V., 1988, J. Phys. F, 18:L153.CrossRefGoogle Scholar
  3. Ackland, G.J. and Thetford, R., 1987, Phil. Mag. A, 56:15.CrossRefGoogle Scholar
  4. Allan G., 1970, Ann. Phys., 5:169.Google Scholar
  5. Allan, G and Lannoo, J., 1976, J. Phys. Chem. Solids 37:699.CrossRefGoogle Scholar
  6. Allan, G and Lannoo, J., 1976, Phys. Stat. Solids B, 74:409.CrossRefGoogle Scholar
  7. Andersen, O.K. and Jepsen, O., 1984, Phys. Rev. Lett., 53:2571.CrossRefGoogle Scholar
  8. Carlsson, A.E. and Ashcroft, N.W., 1983, Phys. Rev. B, 27:2101.CrossRefGoogle Scholar
  9. Chadi, D.J., 1979a, J. Vac. Sci. Technol. 16:1290.CrossRefGoogle Scholar
  10. Chadi, D.J., 1979b, Phys. Rev. B, 19:2074.CrossRefGoogle Scholar
  11. Chadi, D.J., 1984, Phys. Rev. B, 29:785.CrossRefGoogle Scholar
  12. Coulson, C.A., 1939, Proc. R. Soc. Lond. A, 169:413.CrossRefGoogle Scholar
  13. Daw, M.S. and Baskes, M.I., 1983, Phys. Rev. Lett. 50:1285.CrossRefGoogle Scholar
  14. Ercolessi, F., Tosatti, E. and Parinello, M., 1986, Phys. Rev. Lett., 57:719.CrossRefGoogle Scholar
  15. Finnis, M.W. and Sinclair, J.E., 1984, Phil. Mag. A, 50:45, ibid., 53:161 (Erratum).CrossRefGoogle Scholar
  16. Foulkes, M., 1987, PhD Thesis, University of Cambridge.Google Scholar
  17. Glanville, S., Paxton, A.T. and Finnis, M.W., 1988, J. Phys. F, 18:693.CrossRefGoogle Scholar
  18. Harder, J.M. and Bacon, D.J., 1988, Phil. Mag. A, 58:165.CrossRefGoogle Scholar
  19. Harris, J., 1985, Phys. Rev. B, 31:1770.CrossRefGoogle Scholar
  20. Haydock, R., Heine, V. and Kelly, M.J., 1972, J. Phys. C, 5:2845.CrossRefGoogle Scholar
  21. Heine, V., Haydock, R., Bullett, D.W. and Kelly, M.J., 1980, in: “Solid State Physics”, Vol. 35, H. Ehrenreich, F. Seitz and D. Turnbull, eds., Academic, New York.Google Scholar
  22. Inoue, J. and Ohta, Y., 1987, J. Phys. C 20:1947.CrossRefGoogle Scholar
  23. Jones, R. and Lewis, M.W., 1984, Phil. Mag. B, 49:95.Google Scholar
  24. Kohyama, M. Yamamoto, R., Ebata, Y. and Kinoshita, B., 1988, J. Phys. C, 21:3205.CrossRefGoogle Scholar
  25. Legrand, B., 1985, Phil. Mag.A 52:83.CrossRefGoogle Scholar
  26. Marchese, M., Jacucci, G. and Flynn, C.P., 1988, Phil. Mag. Lett. 57:25.CrossRefGoogle Scholar
  27. Masudo-Jindo, K., 1982, J. Physique, 43:921.CrossRefGoogle Scholar
  28. Masuda-Jindo, K., Hamada, N. and Terakura, K., 1984, J. Phys. C, 17:1271.CrossRefGoogle Scholar
  29. Masuda, K. and Sato, A., 1981, Phil. Mag. A, 44:799.CrossRefGoogle Scholar
  30. Masuda, K., Yamamoto, R. and Doyama, M., 1983, J. Phys. F, 13:1407.CrossRefGoogle Scholar
  31. Matthai, C.C. and Bacon, D.J., 1985, Phil. Mag. A, 52:1.CrossRefGoogle Scholar
  32. Maysenhölder, W., 1986, Phil. Mag. A, 53:783.CrossRefGoogle Scholar
  33. Moraitis, G. and Gautier, F., 1979, J. Phys. F, 9:2025.CrossRefGoogle Scholar
  34. Nex, C.M.M., 1978, J. Phys. A, 11:653.CrossRefGoogle Scholar
  35. Nex, C.M.M., Paper to be presented at MSI workshop on Practical Iterative Methods for Large-Scale Computations, October 1988.Google Scholar
  36. Nørskov, J.K. and Lang, N.D., 1980, Phys. Rev. B, 21:2131.CrossRefGoogle Scholar
  37. Nørskov, J.K., 1982, Phys. Rev. B, 26:2875.CrossRefGoogle Scholar
  38. Ohta, Y., Finnis, M.W., Pettifor, D.G. and Sutton, A.P., 1987, J. Phys. C, 17:L273.Google Scholar
  39. Payne, M.C., Bristowe, P.D. and Joannopoulos, J.D., 1986, Phys. Rev. Lett., 58:1348.CrossRefGoogle Scholar
  40. Paxton, A.T. and Sutton, A.P., 1988, J. Phys. C, 21:L481.CrossRefGoogle Scholar
  41. Pettifor, D.G., in “Solid State Physics” Vol. 40, 1987, H. Ehrenreich and D. Turnbull, eds., Academic, New York, pp. 43–92.Google Scholar
  42. Pettifor, D.G. and Podloucky, R., 1986, J. Phys. C, 19:315.CrossRefGoogle Scholar
  43. Rebonato, R. and Broughton, J.Q., 1987, Phil. Mag. A, 55:225.CrossRefGoogle Scholar
  44. Rebonato, R., Welch, D.O., Hatcher, R.D. and Bilello, J.C., 1987, Phil. Mag. A, 55:655.CrossRefGoogle Scholar
  45. Sayers, C.M., 1984, Phil. Mag. B, 50:635.CrossRefGoogle Scholar
  46. Sutton, A.P., Finnis, M.W., Pettifor, D.G. and Ohta, Y., 1988, J. Phys. C, 21:35.CrossRefGoogle Scholar
  47. Terakura, I., Terakura, K. and Hamada, N., 1981, Surf. Sci., 111:479.CrossRefGoogle Scholar
  48. Tréglia, G., Ducastelle, F. and Spanjaard, D., 1980, J. Phys. Paris, 41:281.Google Scholar
  49. Tréglia, G., Desjonquères, M.C. and Spanjaard, D., 1983, J. Phys. C, 16:2407.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • M. W. Finnis
    • 1
  1. 1.Theoretical Physics DivisionHarwell LaboratoryOxfordshireEngland

Personalised recommendations