Transferability of Tight-Binding Matrix Elements

  • D. J. Chadi


The empirical tight-binding method was initially introduced by Slater and Koster1 as an interpolation scheme for band structure calculations. Hamiltonian matrix elements determined by fitting the electronic energies at a few high symmetry points of the Brillouin zone could be used to calculate the entire energy band structure. Reasonably accurate fits to the electronic structure of many crystalline solids, e.g., for Si, have been obtained in this way.2–6 In the last decade the method has been used less frequently as an interpolation scheme and more as a convenient computational tool in studies of surface atomic and electronic structure,7–11 band lineups at interfaces,12 grain boundaries,13,14 phonons,15,16 and structural stabilities of atomic clusters17 and crystalline phases.18 The method is especially suited for studying systems with a large number of atoms. The feasibility of performing realistic total-energy calculations within the tight-binding scheme which makes it possible to do relative comparisons is an important feature of many of these studies. The tight-binding approach to structural studies of semiconductor surfaces, particularly of the prototypical group IV and III-V semiconductors Si and GaAs has been discussed in detail elsewhere.7–11 The tight-binding theory of cohesion in transition metals and their alloys is also well-developed but will not be discussed here.19


Matrix Element Diamond Structure Atomic Coordination High Symmetry Point Hamiltonian Matrix Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.C. Slater and G.F. Koster, Phys. Rev. 94, 1498 (1954).CrossRefGoogle Scholar
  2. 2.
    D.J. Chadi and M.L. Cohen, Phys. Stat. Sol. (b), 68, 405 (1975).CrossRefGoogle Scholar
  3. 3.
    K.C. Pandey and J.C. Phillips, Phys. Rev. B, 13, 750 (1976).CrossRefGoogle Scholar
  4. 4.
    D.A. Papaconstantopoulos, Phys. Rev. B, 22, 2903 (1980); J. D. Shore and D.A. Papaconstantopoulos, Phys. Rev. B, 35: 1122 (1987); and D.A. Papaconstantopoulos in: “Handbook of the Band Structure of Elemental Solids”, Plenum Press, New York (1987).CrossRefGoogle Scholar
  5. 5.
    P. Vogel, H.P. Hjalmarson, and J. Dow, J. Phys. Chem. Solids, 44, 365 (1983).CrossRefGoogle Scholar
  6. 6.
    P.B. Allen, J.Q. Broughton, and A.K. McMahan, Phys. Rev. B, 34, 859 (1986).CrossRefGoogle Scholar
  7. 7.
    D.J. Chadi, Phys. Rev. Lett. 41, 1062 (1978); Phys. Rev. B, 19, 2074 (1979); Phys. Rev. B, 29, 7845 (1984). In these references the tight-bonding total-energy method is discussed and applied to the (110) surfaces of III-V and II-VI semiconductors.CrossRefGoogle Scholar
  8. 8.
    D.J. Chadi, Phys. Rev. Lett. 43, 43 (1979); J. Vac. Sci. Technol. 16, 1290 (1979); J. Appl. Opt. 19, 3974 (1980); Phys. Rev. Lett. 59, 1691 (1987). These references apply to Si(100) surfaces with the most recent paper discussing stepped (100) surfaces.CrossRefGoogle Scholar
  9. 9.
    D.J. Chadi, Phys. Rev. Lett. 52, 1911 (1984); J. Vac. Sci. Technol., B 3, 1167 (1985); Phys. Rev. Lett. 57, 102 (1986). These papers are on the polar (111) surfaces of GaAs and ZnSe.CrossRefGoogle Scholar
  10. 10.
    G.X. Xian and D.J. Chadi, Phys. Rev. B, 35, 1288 (1987). This paper discusses the tight-binding based optimization of the Si (111)-7x7 surface atomic structure.CrossRefGoogle Scholar
  11. 11.
    D.J. Chadi, J. Vac. Sci. Technol. A 5, 834 (1987). In this paper the atomic structure of As-stabilized GaAs (100) surface is analyzed.Google Scholar
  12. 12.
    C. Priester, G. Allan, and M. Lannoo, Phys. Rev. B, 33, 7386 (1986); Phys. Rev. Lett. 58, 1989 (1987).CrossRefGoogle Scholar
  13. 13.
    R.E. Thomson and D.J. Chadi, Phys. Rev. B, 29, 889 (1984).CrossRefGoogle Scholar
  14. 14.
    A.T. Paxton and A.P. Sutton, J. Phys. C, 21, L481 (1988).CrossRefGoogle Scholar
  15. 15.
    D.J. Chadi and R.M. Martin, Solid State Commun., 19, 643 (1976).CrossRefGoogle Scholar
  16. 16.
    D.C. Allan and E.J. Mele, Phys. Rev. Lett., 53, 826 (1984); O.L. Ollerhand, D.C. Allan, and E.J. Mele, Phys. Rev. Lett. 55, 2700 (1985).CrossRefGoogle Scholar
  17. 17.
    D. Tománek and M.A. Schlüter, Phys. Rev. Lett. 56, 1055 (1986).CrossRefGoogle Scholar
  18. 18.
    A.T. Paxton, A.P. Sutton, and C.M.M. Nex, J. Phys. C, 20, L263 (1987).CrossRefGoogle Scholar
  19. 19.
    D.G. Pettifor and R. Podloucky, J. Phys. C, 19, 315 (1986).CrossRefGoogle Scholar
  20. 20.
    W.M.C. Foulkes, PhD Thesis, University of Cambridge 1987; M.W. Finnis, in “Proceedings of this Conference”; and D.G. Pettifor, in “Proceedings of the Conference”.Google Scholar
  21. 21.
    A.P. Sutton, M.W. Finnis, D.G. Pettifor, and Y. Ohta, J. Phys. C, 21, 35 (1988).CrossRefGoogle Scholar
  22. 22.
    D.J. Chadi, J. Vac. Sci. Technol. A2, 948 (1984).Google Scholar
  23. 23.
    M.T. Yin and M.L. Cohen, Phys. Rev. Lett. 45, 1004 (1980); Phys. Rev. B, 26, 5668 (1982).CrossRefGoogle Scholar
  24. 24.
    D.J. Chadi, Phys. Rev. B, 16, 3572 (1977).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • D. J. Chadi
    • 1
  1. 1.Xerox Palo Alto Research CenterPalo AltoUSA

Personalised recommendations