Interatomic Potentials and the Bonding Energetics of Polytetrahedral Packing in Transition Metal Alloys

  • R. B. Phillips
  • A. E. Carlsson


The discovery of quasicrystals1, recent work on the theory of metallic glasses,2,3 and continued interest in the Frank-Kasper phases all provide impetus for understanding the bonding energetics associated with polytetrahedral atomic configurations as building blocks for complex structures. Previous theoretical work has successfully explained the observed stability regions for a few specific PTP phases4,5 (we define PTP phases to be those close packed phases in which all atoms sit at the vertices of tetrahedra, such as the Frank-Kasper phases and possibly some quasicrystals) within the framework of tight binding theory. In addition, Watson and Bennett6 have made a general empirical study of the trends in the relative stability of the majority of the Frank-Kasper phases, using atomic size concepts and d-band hole counts. In this work we provide a more general theoretical analysis, based on total energy calculations, of the factors favoring PTP over fcc packing. This analysis is directly complementary to the empirical analysis of Watson and Bennett,6 and explains empirically observed trends in the relative stability of PTP on the basis of angle-dependent effective interatomic potentials.


Metallic Glass Transition Metal Alloy Previous Theoretical Work Close Packed Phasis Tight Binding Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Shechtman, I. Blech, D. Gratias, and J.W. Cahn, Phys. Rev. Lett. 53:1951 (1984).CrossRefGoogle Scholar
  2. 2.
    D.R. Nelson and M. Widom, Nucl. Phys. B240:113 (1984).CrossRefGoogle Scholar
  3. 3.
    M. Widom, Phys. Rev. B, 31:6456 (1985).CrossRefGoogle Scholar
  4. 4.
    P. Turchi, G. Treglia, and F. Ducastelle, J. Phys. F13:2543 (1983).CrossRefGoogle Scholar
  5. 5.
    R. Haydock and R.L. Johannes, J. Phys. F5:2055 (1975).CrossRefGoogle Scholar
  6. 6.
    R.E. Watson and L.H. Bennett, Acta Met. 32:477 (1984).CrossRefGoogle Scholar
  7. 7.
    J.C. Slater and G.F. Koster, Phys. Rev. 94:1493 (1954).CrossRefGoogle Scholar
  8. 8.
    F. Cyrot-Lackmann, J. Phys. Chem. Solids 29:1235 (1968); F. Ducastelle and F. Cyrot Lackmann, J. Phys. Chem. Solids 32:285 (1971).CrossRefGoogle Scholar
  9. 9.
    P. Turchi and F. Ducastelle in: “The Recursion Method and Its Applications”, D.G. Pettifor and D.L. Weaire, eds. (Springer-Verlag, 1985), p. 104.Google Scholar
  10. 10.
    R.H. Brown and A.E. Carlsson, Phys. Rev. B 32:6125 (1985).CrossRefGoogle Scholar
  11. 11.
    The moments are computed using either path counting techniques or the recursion method. Our calculations are done with the same second moment for all geometries considered. For justification of this approximation see D.G. Pettifor and R. Podloucky, Phys. Rev. Lett. 53:1080 (1984).CrossRefGoogle Scholar
  12. 12.
    E.T. Jaynes, Phys. Rev. 106:620 (1957); 108:171 (1957) L.R. Mead and N. Papanicolaou, J. Math. Phys. 25:2404 (1984).CrossRefGoogle Scholar
  13. 13.
    A.E. Carlsson, Phys. Rev. B 32:4866 (1985). For n atoms there can also be contributions from moments of order higher than n. Our main interest lies in four-atom interactions in a four-moment calculations, in which case these contributions are absent.CrossRefGoogle Scholar
  14. 14.
    R.B. Phillips and A.E. Carlsson, Phys. Rev. B 37:10880 (1988).CrossRefGoogle Scholar
  15. 15.
    R.B. Phillips and A.E. Carlsson, unpublished.Google Scholar
  16. 16.
    W.R. Morcoh, W.L. Worrell, H.G. Sell, and H.I. Kaplan, Metall Trans. 5:155 (1974); G.R. Stewart, L.R. Newkirk, and F.A. Valencia, Phys. Rev. B 21:5055 (1980); C.G. Granquist, G.J. Milanowski, and R.A. Huhrman, Phys. Lett. 54:245 (1975).Google Scholar
  17. 17.
    F.C. Frank, Proc. Roy. Soc. A215:43 (1952).Google Scholar
  18. 18.
    M. Widom, K.J. Strandburg, and R.H. Swendsen, Phys. Rev. Lett. 58:706 (1987).CrossRefGoogle Scholar
  19. 19.
    P.J. Steinhardt, D.R. Nelson, and M. Ronchetti, Phys. Rev. B 28:784 (1983).CrossRefGoogle Scholar
  20. 20.
    R.H. Brown, Ph.D. Thesis, unpublished.Google Scholar
  21. 21.
    R.B. Phillips and A.E. Carlsson, unpublished.Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • R. B. Phillips
    • 1
  • A. E. Carlsson
    • 1
  1. 1.Department of PhysicsWashington UniversitySt. LouisUSA

Personalised recommendations