Physical Properties of Grain-Boundary Materials: Comparison of EAM and Central-Force Potentials

  • D. Wolf
  • J. Lutsko
  • M. Kluge


Three types of grain-boundary phenomena expected to be particularly sensitive functions of a local-volume dependence in the interatomic interaction potentials employed are investigated by means of many-body (embedded-atom and Finnis-Sinclair) and pair potentials. These phenomena are the zero-temperature volume expansion localized at the grain boundaries, the local elastic constants of grain-boundary materials, and their high-temperature stability. The same qualitative behavior is found in all these phenomena for both types of potentials, from which it is concluded that the local-volume dependence, incorporated in the many-body potentials only, does not have a strong effect on the predicted properties of grain-boundary materials. The reasons for these similarities are thought to arise from the fact that most grain-boundary properties are governed, as are those of liquids, by atoms in very close contact; i.e., by the short-range part of the interatomic potential which is of a central-force type in both sets of potentials. However, many-body potentials are expected to represent a given material better than pair-potentials since (i) they usually permit a larger number of adjustable parameters to be fitted to real-material properties, and (ii) in contrast to equilibrium pair-potentials they do not satisfy the Cauchy relation.


Volume Expansion Pair Potential Twist Boundary Static Structure Factor Poisson Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. S. Daw and M. I. Baskes, Phys. Rev. Lett. 50:1285 (1983).CrossRefGoogle Scholar
  2. 2.
    M. W. Finnis and J. E. Sinclair, Phil. Mag. A 50:45 (1984).Google Scholar
  3. 3.
    R. A. Johnson, Phys. Rev. 134, A1329 (1964).CrossRefGoogle Scholar
  4. 4.
    See, for example, R. A. Johnson, in “Computer Simulation in Materials Science,” R. J. Arsenault, J. R. Beeler, Jr. and D. M. Esterling (American Society for Metals, Metals Park, 1987), p. 29.Google Scholar
  5. 5.
    S. M. Foiles, M. I. Baskes, and M. S. Daw, Phys. Rev. B33:7983 (1986).Google Scholar
  6. 6.
    G. J. Ackland and R. Thetford, Phil. Mag. A56:15 (1987).Google Scholar
  7. 7.
    D. J. Oh and R. A. Johnson, J. Mater. Res. 3:471 (1988).CrossRefGoogle Scholar
  8. 8.
    D. Wolf, Acta Metall. (to be published).Google Scholar
  9. 9.
    D. Wolf, Phil. Mag. A (to be published).Google Scholar
  10. 10.
    W. T. Read and W. Shockley, Phys. Rev. 78:275 (1950).CrossRefGoogle Scholar
  11. 11.
    Siu-Wai Chan and R. W. Balluffi, Acta Metall. 26:1113 (1985).Google Scholar
  12. 12.
    D. Wolf, Acta Metall. 32:245 (1984) and Acta Metall. 32:735 (1984).CrossRefGoogle Scholar
  13. 13.
    D. Wolf, Physica 131B:53 (1985).Google Scholar
  14. 14.
    D. Wolf in: “Computer Simulation in Materials Science,” (edited by R. J. Arsenault, J. R. Beeler and D. M. Esterling), American Society for Metals, 1987, Metals Park, Ohio, p. 111.Google Scholar
  15. 15.
    A. Seeger and G. Schottky, Acta Metall. 7:495 (1959).CrossRefGoogle Scholar
  16. 16.
    J. Lutsko, J. Appl. Phys. 64:1152 (1988).CrossRefGoogle Scholar
  17. 17.
    M. Kluge, J. Lutsko, and D. Wolf, Scripta Metall. (submitted).Google Scholar
  18. 18.
    W. M. C. Yang, T. Tsakalakos, and J. E. Hilliard, J. Appl. Phys. 48:876 (1977).CrossRefGoogle Scholar
  19. 19.
    For a review see I. K. Schuller, IEEE 1985 Ultrasonics Symposium, B. R. McAvoy, ed. (IEEE, New York, 1985), p. 1093.Google Scholar
  20. 20.
    T. B. Wu, J. Appl. Phys. 53:5265 (1982).CrossRefGoogle Scholar
  21. 21.
    D. Wolf and J. Lutsko, Phys. Rev. Lett. 60:12 (1988).Google Scholar
  22. 22.
    J. Lutsko and D. Wolf, Phys. Rev. B. (submitted).Google Scholar
  23. 23.
    A. Kueny, M. Grimsditch, K. Miyano, I. Banerjee, C. M. Falco, and I. K. Schuller, Phys. Rev. Lett. 48:166 (1982).CrossRefGoogle Scholar
  24. 24.
    M. Grimsditch, to be published in: “Brillouin Scattering from Metallic Superlattices,” M. Cardona and G. Günthcrodt, eds., Springer, Heidelberg.Google Scholar
  25. 25.
    M. Guillope, G. Ciccotti, and V. Pontikis, Surf. Sci. 144:67 (1984).CrossRefGoogle Scholar
  26. 26.
    P. Deymier, G. Kalonji, R. Najafabadi, and S. Yip, Surf. Sci. 144:77 (1984).CrossRefGoogle Scholar
  27. 27.
    P. S. Ho, T. Kwok, T. Nguyen, C. Nitta, and S. Yip, Scripta Metall. 19:993 (1985); T. Nguyen, P. S. Ho, T. Kwok, C. Nitta, and S. Yip, Phys. Rev. Lett. 57:1919 (1986).CrossRefGoogle Scholar
  28. 28.
    P. Deymier, A. Taiwo, and G. Kalonji, Acta Metall. 35:2819 (1987).Google Scholar
  29. 29.
    J. Q. Broughton and G. H. Gilmer, Phys. Rev. Lett. 56:2692 (1986).CrossRefGoogle Scholar
  30. 30.
    R. W. Balluffi, J. Phys. Paris, 49:C5–337 (1988).CrossRefGoogle Scholar
  31. 31.
    J. F. Lutsko, D. Wolf, S. Yip, S. R. Phillpot, and T. Nguyen, Phys. Rev. B (to be published).Google Scholar
  32. 32.
    J. F. Lutsko, D. Wolf, S. Phillpot, and S. Yip, Phys. Rev. B (submitted).Google Scholar
  33. 33.
    F. H. Stillinger and T. A. Weber, Phys. Rev. B31:5262 (1985).Google Scholar
  34. 34.
    S. Phillpot, J. F. Lutsko, D. Wolf, and S. Yip, Phys. Rev. B (submitted).Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • D. Wolf
    • 1
  • J. Lutsko
    • 1
  • M. Kluge
    • 1
  1. 1.Materials Science DivisionArgonne National LaboratoryArgonneUSA

Personalised recommendations