Effects of B and S on Ni3Al Grain Boundaries

  • A. F. Voter
  • S. P. Chen
  • R. C. Albert
  • A. M. Boring
  • P. J. Hay


In many materials, the mechanical behavior is controlled by the grain boundary (GB) properties. An extreme example is the ordered alloy Ni3Al, which, as a single crystal, is ductile, while as a pure polycrystal, exhibits severe intergranular brittleness, making it useless as a technological material. However, it has been found [1] that doping Ni3Al that is slightly Ni-rich (76% Ni) with small amounts of boron (~l-2 atomic %) restores the ductility almost to the level of the single crystal. While it is known experimentally that B segregates to grain boundaries [1], the mechanism by which ductilization occurs is not known. We present here results of our initial investigation into the effects of impurities on Ni3Al grain boundaries, using interatomic potentials of the embedded atom [2,3] form, coupled with molecular statics techniques.


Grain Boundary Interatomic Potential Embed Atom Method Symmetric Tilt Octahedral Interstitial Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C.T. Liu, C.L. White and J.A. Horton, Acta Metall., 33:213 (1985).CrossRefGoogle Scholar
  2. 2.
    M.S. Daw and M.I. Baskes, Phys. Rev. Lett. 50:1285 (1983); Phys. Rev. B 29:6443 (1984).CrossRefGoogle Scholar
  3. 3.
    A.F. Voter and S.P. Chen, Mater. Res. Soc. Svmp. Proc. Vol. 82:175 (1987).CrossRefGoogle Scholar
  4. 4.
    “Grain Boundary Structure and Kinetics”, ed. by R.W. Balluffi, ASM, Metals Park, OH (1980).Google Scholar
  5. 5.
    A.P. Sutton, Int. Metals Rev. 29:377 (1984).Google Scholar
  6. 6.
    S.P. Chen, A.F. Voter, and D.J. Srolovitz, Scripta Met. 20:1389 (1986).CrossRefGoogle Scholar
  7. 7.
    S.M. Foiles, MRS Proceedings 81:51 (1987).CrossRefGoogle Scholar
  8. 8.
    J.J. Kruisman, V. Vitek, and J.Th.M. DeHosson, Acta. Met. 36:2729 (1988).CrossRefGoogle Scholar
  9. 9.
    J.H. Rose, J.R. Smith, F. Guinea, and J. Ferrante, Phys. Rev. B 29:2963 (1984).CrossRefGoogle Scholar
  10. 10.
    S.M. Foiles, Phys. Rev. B 32:7685 (1985); S.M. Foiles, M.I. Baskes, and M.S. Daw, Phys. Rev. B 33:7983 (1986).CrossRefGoogle Scholar
  11. 11.
    J.A. Nelder and R. Mead, Comp J. 7:308 (1965).Google Scholar
  12. 12.
    O.K. Andersen, Phys. Rev. B 12:3060 (1975); H.L. Skriver, “The LMTO Method: Muffin-Tin Orbitals and Electronic Structure”, Springer-Verlag, Berlin (1984).CrossRefGoogle Scholar
  13. 13.
    J. Douin, P. Veyssière, and P. Beauchamp, Phil. Mag. A54:375 (1986).Google Scholar
  14. 14.
    S.P. Chen, A.F. Voter, and D.J. Srolovitz, Phys. Rev. Lett. 57:1308 (1986).CrossRefGoogle Scholar
  15. 15.
    S.P. Chen, D.J. Srolovitz and A.F. Voter, J. Mater. Res. 4:62 (1989).CrossRefGoogle Scholar
  16. 16.
    S.P. Chen, A.F. Voter, R.C. Albers, A.M. Boring, and P.J. Hay, Scripta Met., 23:217 (1989).CrossRefGoogle Scholar
  17. 17.
    J. Hack, D.J. Srolovitz, and S.P. Chen, Scripta Met. 20:1699 (1986).CrossRefGoogle Scholar
  18. 18.
    V. Vitek, S.P. Chen, A.F. Voter, J.J. Kruisman, and J.Th.M. DeHosson, in: “Grain Boundary Chemistry and Intergranular Fracture”, G.S. Was, ed., Trans. Tech. Publications (1989).Google Scholar
  19. 19.
    C.L. White, R.A. Padgett, C.T. Liu, and S.M. Yalisov, Scripta Met. 18:1417 (1984).CrossRefGoogle Scholar
  20. 20.
    S.P. Chen, A.F. Voter, R.C. Albers, A.M. Boring, and P.J. Hay, J. Mater. Res., submitted.Google Scholar
  21. 21.
    “Embrittlement of Engineering Alloys”, C.L. Briant and S.K. Banerji, eds. Academic Press, New York, NY (1983).Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • A. F. Voter
    • 1
  • S. P. Chen
    • 1
  • R. C. Albert
    • 1
  • A. M. Boring
    • 1
  • P. J. Hay
    • 1
  1. 1.Los Alamos National LaboratoryLos AlamosUSA

Personalised recommendations