Ab-Initio Study of Amorphous and Liquid Carbon

  • Giulia Galli
  • Richard M. Martin
  • Roberto Car
  • Michele Parrinello


The bonded forms of carbon in solid and liquid states have considerable variations with many characteristics which make them interesting for a wide range of researchers1–4. Nevertheless, outstanding questions concerning the properties of both non-crystalline and liquid carbon are yet unanswered; in particular, knowledge of the structural and electronic properties of the low density disordered phases, the nature of the liquid state and the melting mechanism — despite systematic investigations4 of the carbon phase diagram carried out in different fields, such as condensed matter physics1, astrophysics2 and geology3.


Radial Distribution Function Liquid Carbon Kohn Sham Macroscopic Density Systematic Investigations4 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    See, e.g., (a) J. Robertson, Adv. Phys. 35:317 (1986) and references thereinCrossRefGoogle Scholar
  2. 1.(b)
    J. Steinbeck, G. Braunstein, M.S. Dresselhaus, T. Venkatesan and D.C. Jacobson, J. Appl. Phys. 58:4374 (1985).CrossRefGoogle Scholar
  3. 2.
    M. Ross, Nature, 292:435 (1981).CrossRefGoogle Scholar
  4. 3.(a)
    J.S. Dickey, W.A. Bassett, J.M. Bird and M.S. Weathers, Geology, 11:219 (1983)CrossRefGoogle Scholar
  5. 3.(b)
    D.A. Young and R. Groover, Nature (1988).Google Scholar
  6. 4.(a)
    F.B. Bundy, J. of Geophys. Res. 85:6930 (1980)CrossRefGoogle Scholar
  7. 4.(b)
    J. Heremas, C.H. Olk, G.L. Eeseley, J. Steinbeck and G. Dresselhaus, Phys. Rev. Lett. 60:453 (1988).Google Scholar
  8. 5.
    g-C has low density (ρ = 101.5, while experiments (see, e.g., Ref. 1a) suggest that a-C has ρ = 1.8–2.7 Scholar
  9. 6.(a)
    J. Fink, T. Muller-Heinzerling, J. Pfluger, A. Bubenzer, P. Koidl and G. Crecelius, Solid St. Comm. 47:687 (1983)CrossRefGoogle Scholar
  10. 6.(b)
    J. Fink, T. Muller-Heinzerling, J. Pfluger, B. Scheerer, B. Dischler, P. Koidl, A. Bubenzer and R.E. Sah, Phys. Rev. B 30:4713 (1984)CrossRefGoogle Scholar
  11. 6.(c)
    D. Wesner, S. Krummacher, R. Carr, T.K. Sham, M. Strongin, W. Eberhardt, S.L. Weng, G. Williams, M. Howells, F. Kampas, S. Heald and F.W. Smith, Phys. Rev. B 28:2152 (1983).CrossRefGoogle Scholar
  12. 7.(a)
    D.F.R. Mildner and J.M. Carpenter, J. Non-Cryst. Solids 47:391 (1982)CrossRefGoogle Scholar
  13. 7.(b)
    J. Kakinoki, K. Katada, T. Hanawa and T. Ino, Acta Cryst. 13:171 and 448 (1960); and ibid 18:578 (1965)CrossRefGoogle Scholar
  14. 7.(c)
    B.T. Boiko, L.S. Palatnik and A.S. Derevyanchenko, Sov. Physics Doklady, 13:237 (1968)Google Scholar
  15. 7.(d)
    L. Cervinka, F.P. Dousek and J. Jansta, Phil. Mag. B 51:604 (1985).Google Scholar
  16. 8.(a)
    A.L. Ritter, J.R. Dennison and R. Jones, Phys. Rev. Lett. 53:2054 (1984)CrossRefGoogle Scholar
  17. 8.(b)
    Y.Y. Wnag, A.L. Ritter, T.J. Fabish and J.A. Nemetz, Bull. Amer. Phys.Soc. 33:354 (1988)Google Scholar
  18. 8.(c)
    C. Gao, A.L. Ritter, T.J. Basish and J.A. Nemetz, Bull. Amer. Phys. Soc. 33:354 (1988).Google Scholar
  19. 9.
    F.P. Bundy, J. Chem. Phys. 38:631 (1963).CrossRefGoogle Scholar
  20. 10.
    T. Venkatesan, D.C. Jacobsin, J.M. Gibson, B.S. Elman, G. Braunstein, M.S. Dresselhaus and G. Dresselhaus, Phys. Rev. Lett. 53:360 (1984).CrossRefGoogle Scholar
  21. 11.(a)
    A.M. Malvezzi, N. Bloenbergen and C.Y. Huang, Phys. Rev. Lett. 57:146 (1986)CrossRefGoogle Scholar
  22. 11.(b)
    E.A. Chauchard, C.E. Lee and C.Y. Huang, Appl. Phys.Lett. 50:812 (1987).CrossRefGoogle Scholar
  23. 12.(a)
    G.J. Schoessow, Phys. Rev. Lett. 21:738 (1968)CrossRefGoogle Scholar
  24. 12.(b)
    N.S. Fateeva and L.F. Vereshchagin, JEPT Lett. 13:119 (1971).Google Scholar
  25. 13.
    H.R. Leider, O.H. Krikorian and D.A. Young, Carbon 11:555 (1973).CrossRefGoogle Scholar
  26. 14.
    See, e.g., R.B. Heimann, J. Kleinman and N.M. Salansky, Nature. 306:164 (1983).CrossRefGoogle Scholar
  27. 15.
    A.G. Whittaker, Nature 276:695 (1978); Science. 200:763 (1978) and ibid, 229:485 (1985).CrossRefGoogle Scholar
  28. 16.
    P.P.K. Smith and P.R. Buseck, Science 216:985 (1982) and ibid, 229:487 (1985).Google Scholar
  29. 17.
    G. Galli, R.M. Martin, R. Car and M. Parrinello, Phys. Rev. Lett., 62:555 (1989).CrossRefGoogle Scholar
  30. 18.
    R. Car and M. Parrinello, Phys. Rev. Lett. 55:2471 (1985).CrossRefGoogle Scholar
  31. 19.(a)
    S. Nosé, Mol Phys. 52:255 (1984) and J. Chem. Phys. 81:511 (1984)CrossRefGoogle Scholar
  32. 19.(b)
    W.G. Hoover, Phys. Rev.A 31:1695 (1985).CrossRefGoogle Scholar
  33. 20.
    L. Kleinman and D.M. Bylander, Phys. Rev. Lett. 48:1425 (1982).CrossRefGoogle Scholar
  34. 21.
    sp, sp 2 and sp 3 sites designates 2, 3 and 4 coordinated atoms, respectively. We have defined the coordination by considering neighbor atoms to lie at a distance less than the first minimum of the pair correlation function g(r).Google Scholar
  35. 22.
    The bond lengths in the crystal structures have been obtained with the same kinetic energy cut-off as that adopted for a-C, which leads to an overestimate of the corresponding experimental values of about 2%, if Ecut = 32 Ry is used.Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Giulia Galli
    • 1
  • Richard M. Martin
    • 1
  • Roberto Car
    • 2
  • Michele Parrinello
    • 2
  1. 1.Dept. of PhysicsUniversity of IllinoisUrbanaUSA
  2. 2.International School for Advanced StudiesTriesteItaly

Personalised recommendations