Molecular Dynamics Simulation of the Physics of Thin Film Growth on Silicon: Effects of the Properties of Interatomic Potential Models

  • W. Lowell Morgan


During the past several years numerous papers have been published on simulations of properties of silicon. There have been a number of papers published that develop multibody interatomic potentials for silicon1–4 and many more that investigate a variety of surface phenomena via molecular dynamics simulation. Examples relevant to this discussion include modeling of epitaxial growth;5–8 and surface reconstruction.9–11 Reference [4] provides a good, but not exhaustive, summary of the wide variety of atomistic simulations that have been performed on silicon as well as on other materials.


Molecular Dynamic Simulation Epitaxial Growth Lawrence Livermore National Laboratory Thin Film Growth Body Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F.H. Stillinger and T.A. Weber, Computer simulation of local order in condensed phases of silicon, Phys. Rev. B31:5262 (1985).Google Scholar
  2. 2.
    R. Biswas and D.R. Hamann, New classical models for silicon structural energies, Phys. Rev. B36:6434 (1987).Google Scholar
  3. 3.
    J. Tersoff, New empirical approach for the structure and energy of covalent systems, Phys. Rev. B37:6991 (1988).Google Scholar
  4. 4.
    M. Baskes, M. Daw, B. Dodson, and S. Foiles, Atomic scale simulation in materials science, MRS Bulletin 13(2):28 (1988).Google Scholar
  5. 5.
    M. Schneider, I.K. Schuller, and A. Rahman, Epitaxial growth of silicon: a molecular dynamics simulation, Phys. Rev. B36:1340 (1987).Google Scholar
  6. 6.
    E.T. Gawlinski and J.D. Gunton, Molecular dynamics simulation of molecular beam epitaxial growth of the silicon (100) surface, Phys. Rev. B36:4774 (1987).Google Scholar
  7. 7.
    S. Das Sarma, S.M. Paik, K.E. Khor, and A. Kobayashi, Atomistic numerical simulation of spitaxial crystal growth, J. Vac. Sci. Technol. B5:1179 (1987).Google Scholar
  8. 8.
    B.J. Garrison, M.T. Miller, and D.W. Brenner, Kinetic energy enhanced molecular beam epitaxial growth of Si(100), Chem. Phys. Lett. 146:553 (1988).CrossRefGoogle Scholar
  9. 9.
    T.A. Weber, private communication.Google Scholar
  10. 10.
    F.F. Abraham and I.P. Batra, A model potential study of the Si(001) 2x1 surface, Surf. Sci. 163:L752 (1985).CrossRefGoogle Scholar
  11. 11.
    K.E. Khor and S. Das Sarma, Model potential based simulation of Si(100) surface reconstruction, Phys. Rev. B36:7733 (1987).Google Scholar
  12. 12.
    R. Tubino, L. Piseri, and G. Zerbi, Lattice dynamics and spectroscopic properties by a valence force potential of diamond-like crystals: C, Si, Ge, Sn, J. Chem. Phys. 56:1022 (1972).CrossRefGoogle Scholar
  13. 13.
    G.A. Somorjai, “Principles of Surface Chemistry”, Prentice-Hall, Englewood Cliffs, NJ (1972).Google Scholar
  14. 14.
    T. Soma and H. Matsuo, Debye-Waller factor of Si and Ge, Phys. Stat. Sol. B111:K93(1982).Google Scholar
  15. 15.
    I. NoorBatcha, L.M. Raff, and D.L. Thompson, A phenomenological approach to the calculation of the diffusion coefficient for Si on Si (111) using classical trajectories, J. Chem. Phys. 82:1543 (1985).CrossRefGoogle Scholar
  16. 16.
    B.W. Dodson, Evaluation of the Stillinger-Weber classical interaction potential for tetragonal semiconductors in non-ideal atomic configurations, Phys. Rev. B33:7361 (1986).Google Scholar
  17. 17.
    K.L. Carleton and S.R. Leone, Laser probing of gallium interactions with silicon (100) surfaces, J. Vac. Sci. Technol. B5:1141 (1987).Google Scholar
  18. 18.
    B. Bourguignon, K.L. Carleton, and S.R. Leone, Surface structures and growth mechanism of Ga on Si(100) determined by LEED and Auger electron spectroscopy, Surf. Sci., 199:455 (1988).CrossRefGoogle Scholar
  19. 19.
    B. Bourguignon, R.V. Smilgys, and S.R. Leone, AES and LEED studies correlating desorption energies with surface structures and coverages for Ga on Si(100), Surf. Sci., 199:473 (1988).CrossRefGoogle Scholar
  20. 20.
    T. Thundat, et al., Experimental and theoretical investigation of chemisorbed Ga on Si(111), J. Vac. Sci. Technol. A6:681 (1988).Google Scholar
  21. 21.
    J.M. Nicholls, B. Reihl, and J.E. Northrup, Unoccupied surface states revealing the Si(111) √3 × √3-Al,-Ga, and-In adatom geometries, Phys. Rev. B35:4137 (1987).Google Scholar
  22. 22.
    A. Kawazu et al., Structural studies of Ga-adsorbed Si(111) √3 × √3 surfaces by low energy electron diffraction, Phys. Rev. B36:9809 (1987).Google Scholar
  23. 23.
    K. Balasubramanian, Electronic states of Ga, J. Phys. Chem. 90:6786 (1986).CrossRefGoogle Scholar
  24. 24.
    W. Schommers, Pair potential in disordered many-particle systems: a study for liquid gallium, Phys. Rev. A28:3599 (1983).Google Scholar
  25. 25.
    J.L. Bretonnet and C. Regnaut, Determination of the structure factor of simple liquid metals from pseudopotential theory and optimized random phase approximation: application to Al and Ga, Phys. Rev. B31:5071 (1985).Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • W. Lowell Morgan
    • 1
    • 2
  1. 1.Joint Institute for Laboratory Astrophysics, National Bureau of StandardsUniversity of ColoradoBoulderUSA
  2. 2.Chemistry and Materials Science DepartmentLawrence Livermore National LaboratoryLivermoreUSA

Personalised recommendations