Theory of Ground- and Excited-State Properties of Solids, Surfaces, and Interfaces: Beyond Density Functional Formalism

  • Steven G. Louie


A number of methods, going beyond pair-potentials, now exist for calculation of the structural and electronic properties of materials. These range from the use of classical many-body atomic potentials to the semiempirical quantum approaches to parameter-free ab initio methods.1 Among the first-principles methods, basically one of the following two approaches is employed in treating many-electron correlations: (1) the Hartree-Fock plus correlation corrections approach or (2) the local density functional formalism (LDA). The LDA is by far the more commonly employed approach. The Hartree-Fock-plus-corrections calculations have been mostly restricted to the lighter elements and to binding energies.


Quantum Monte Carlo Band Offset Quasiparticle Energy Screen Coulomb Interaction Single Slater Determinant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    See the various articles in this volume.Google Scholar
  2. 2.
    P. Hohenberg and W. Kohn, Phys. Rev., 136:B864 (1964); W. Kohn and L.J. Sham, Phys. Rev., 140:A1133 (1965).CrossRefGoogle Scholar
  3. 3.
    “Theory of the Inhomogeneous Electron Gas”, S. Lundqvist and N.H. March, eds., Plenum, New York (1983), and references therein.Google Scholar
  4. 4.
    S.G. Louie, in “Electronic Structure, Dynamics and Quantum Structural Properties of Condensed Matter”, J. Devreese and P. van Camp, eds., Plenum, New York (1985), p. 335.Google Scholar
  5. 5.
    M.S. Hybertsen and S.G. Louie, Comments Cond. Mat. Phys., 13:223 (1987).Google Scholar
  6. 6.
    M.S. Hybertsen and S.G. Louie, Phys. Rev. Lett., 55:1418 (1985); Phys. Rev. B, 34:5390 (1986).CrossRefGoogle Scholar
  7. 7.
    S. Fahy, X.W. Wang, and S.G. Louie, Phys. Rev. Lett., 61:1631 (1988).CrossRefGoogle Scholar
  8. 8.
    E.W. Plummer, Surf. Sci., 152/153:162 (1985).CrossRefGoogle Scholar
  9. 9.
    See, for example, the excellent review by L. Hedin and S. Lundqvist, Solid State Phys., 23:1 (1969).CrossRefGoogle Scholar
  10. 10.
    For references on earlier work, see Ref. 6.Google Scholar
  11. 11.
    C.S. Wang and W.E. Pickett, Phys. Rev. Lett., 51:597 (1983).CrossRefGoogle Scholar
  12. 12.
    C. Strinati, H.J. Mattausch, and W. Hanke, Solid State Commun., 51:23 (1984), and references therein.CrossRefGoogle Scholar
  13. 13.
    S. Horsch, P. Horsch, and P. Fulde, Phys. Rev. B, 29:1870 (1984).CrossRefGoogle Scholar
  14. 14.
    L.J. Sham and M. Schluter, Phys. Rev. Lett., 51:1888 (1983); J.P. Perdew and M. Levy, Phys. Rev. Lett., 51:1884 (1983); R.W. Godby, M. Schluter, and L.J. Sham, Phys. Rev. Lett., 56:2415 (1986).CrossRefGoogle Scholar
  15. 15.
    L. Hedin, Phys. Rev., 139:A796 (1965).CrossRefGoogle Scholar
  16. 16.
    It is shown recently that an accurate ε-1 Open image in new window for the quasiparticle problem may also be obtained in a more simplified model with one parameter for the semiconductors. See M.S. Hybertsen and S.L. Louie, Phys. Rev. B, 37:2733 (1988).CrossRefGoogle Scholar
  17. 17.
    M.S. Hybertsen and S.G. Louie, Phys. Rev. B, 32:7005 (1985).CrossRefGoogle Scholar
  18. 18.
    N.E. Northrup, M.S. Hybertsen, and S.G. Louie, Phys. Rev. Lett., 59:819 (1987).CrossRefGoogle Scholar
  19. 19.
    M.S. Hybertsen and S.G. Louie, Phys. Rev. Lett., 58:1551 (1987); Phys. Rev. B, 38:4033 (1988).CrossRefGoogle Scholar
  20. 20.
    S.B. Zhang, D. Tomanek, S.G. Louie, M.L. Cohen, and M.S. Hybertsen, Solid State Commun., 66:585 (1988).CrossRefGoogle Scholar
  21. 21.
    “Landolt-Borstein: Zahlenwerte und Funktionen aus Naturwissenscharten und Technik”, Springer, New York (1982), Vol. III, pt. 17a.Google Scholar
  22. 22.
    G. Baldini and B. Bosacchi, Phys. Sat. Sol., 38:325 (1970).CrossRefGoogle Scholar
  23. 23.
    R.W. Godby, M. Schluter, and L.J. Sham, Phys. Rev. B, 35:4170 (1987).CrossRefGoogle Scholar
  24. 24.
    D.E. Aspnes, Phys. Rev. B, 12:2797 (1975).Google Scholar
  25. 25.
    R.R.L. Zucca and Y.R. Shen, Phys. Rev. B, 1:2668 (1970).CrossRefGoogle Scholar
  26. 26.
    R.A. Roberts and W.C. Walker, Phys. Rev., 161:730 (1967).CrossRefGoogle Scholar
  27. 27.
    F.J. Himpsel, J.F. van der Veen, and D.E. Eastman, Phys. Rev. B, 22: 1967 (1980).CrossRefGoogle Scholar
  28. 28.
    M.L. Cohen and J.R. Chelikowsky, “Electronic Structure and Optical Properties of Semiconductors”, Springer-Verlag, Berlin (1988).CrossRefGoogle Scholar
  29. 29.
    A.L. Weeks, T. Miller, T.C. Hsieh, A.P. Shapiro, and T.-C. Chiang, Phys. Rev. B, 32:2326 (1985).CrossRefGoogle Scholar
  30. 30.
    E. Jensen and E.W. Plummer, Phys. Rev. Lett., 55:1912 (1985).CrossRefGoogle Scholar
  31. 31.
    For the Si (111) surface, see M.A. Olmstead, R.D. Bringans, R.I.G. Uhrberg, and R.Z. Bachrach, Phys. Rev. B, 34:6041 (1986); R.I. Uhrberg, R.D. Bringans, M.A. Olmstead, R.Z. Bachrach, and J.E. Northrup, ibid, 35:3945 (1987).CrossRefGoogle Scholar
  32. 32.
    For the Ge (111) surface, see R.D. Bringans, R.I.G. Uhrberg, R.Z. Bachrach, and J.E. Northrup, Phys. Rev. Lett., 55:533 (1985); R.D. Bringans, R.I.G. Uhrberg, R.Z. Bachrach, and J.E. Northrup, J. Vac.Sci. Tech.A, 4:1380 (1986); R.D. Bringans, R.I.G. Uhrberg, and R.Z. Bachrach, Phys. Rev. B, 34:2373 (1986).CrossRefGoogle Scholar
  33. 33.
    J.R. Patel, J.A. Golovchenko, P.E. Freiland, and H.J. Grossmann, Phys. Rev. B, 36:7715 (1987).CrossRefGoogle Scholar
  34. 34.
    R.S. Becker, B.S. Swartzenruber, J.S. Vichers, M.S. Hybertsen, and S.G. Louie, Phys. Rev. Lett., 60:116 (1988).CrossRefGoogle Scholar
  35. 35.
    This expression assumes that the electrostatic potential at the interface is well-represented in the LDA. This should be a very good approximation since LDA is known to give excellent charge densities.Google Scholar
  36. 36.
    C.G. Van der Walle and R.M. Martin, J. Vac. Sci. Technol. B, 3:1256 (1985).CrossRefGoogle Scholar
  37. 37.
    P. Dawson, K.J. Moore, and C.T. Foxon, in “Quantum Well and Superlattice Physics”, Proceedings of SPIE, 792, G.H. Dohler and J.N. Schulman, eds., SPIE, Washington (1987), p. 208; D.J. Wolford, private communications.Google Scholar
  38. 38.
    W.L. McMillan, Phys. Rev. 138:A442 (1965).CrossRefGoogle Scholar
  39. 39.
    D. Ceperley, G.V. Chester, and M.H. Kalos, Phys. Rev. B, 16:3081 (1977).CrossRefGoogle Scholar
  40. 40.
    The amount of computation time increases approximately as z5.5; see D.M. Ceperley, J. Stat. Phys., 43:815 (1986).CrossRefGoogle Scholar
  41. 41.
    D.R. Hamann, M. Schlüter, and C. Chiang, Phys. Rev. Lett., 43:1494 (1979).CrossRefGoogle Scholar
  42. 42.
    S. Fahy, X.W. Wang, and S.G. Louie, to be publishedGoogle Scholar
  43. 43.
    N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller, J. Chem. Phys., 21:1087 (1953).CrossRefGoogle Scholar
  44. 44.
    G. Stollhoff and K.P. Bohnen, Phys. Rev. B, 37:4678 (1988).CrossRefGoogle Scholar
  45. 45.
    J.R. Perdew and A. Zunger, Phys. Rev. B, 23:5048 (1981).CrossRefGoogle Scholar
  46. 46.
    See S. Fahy and S.G. Louie, Phys. Rev. B, 36:3373 (1987), and references therein.CrossRefGoogle Scholar
  47. 47.
    L. Brewer, Lawrence Berkeley Laboratory Report No. LBL-3720 (unpublished).Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Steven G. Louie
    • 1
    • 2
  1. 1.Department of PhysicsUniversity of CaliforniaBerkeleyUSA
  2. 2.Materials & Chemical Sciences DivisionLawrence Berkeley LaboratoryBerkeleyUSA

Personalised recommendations