Angular Forces in Transition Metals and Diamond Structure Semiconductors

  • A. E. Carlsson


This paper describes the motivation for developing angular forces in transition metals and semiconductors, and discusses the calculation of such forces and their relation to observed structures. The successes and failures of radial force schemes are first briefly described. Subsequently, existing methods for generating angular forces are discussed, with emphasis on methods based on tight-binding analysis. Plots of the angular potentials are given for model transition metals and semiconductors. The features in the potentials are used to interpret observed bond angles in these systems.


Angular Dependence Pair Potential Rectangular Band Group Versus Element Electronic Band Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. W. Finnis, A. T. Paxton, D. G. Pettifor, A. P. Sutton, and Y. Ohta, Phil. Mag. A58:143(1988).Google Scholar
  2. 2.
    A. E. Carlsson in: “Solid State Physics: Advances in Research and Applications”, edited by H. Ehrenreich and D. Turnbull, Volume 43, (Academic, New York) (in press).Google Scholar
  3. 3.
    M. S. Daw and M. I. Baskes, Phys. Rev. Lett. 50:1285 (1983); Phys. Rev. B 29: 6443 (1984).CrossRefGoogle Scholar
  4. 4.
    M. W. Finnis and J. M. Sinclair, Phil. Mag. A50:45 (1984); Phil. Mag. A53:161 (1986).Google Scholar
  5. 5.
    V. Heine and D. Weaire, in: “Solid State Physics: Advances in Research and Applications”, edited by H. Ehrenreich, R. Seitz and D. Turnbull, Volume 35, (Academic, New York, 1970), p. 1.Google Scholar
  6. 6.
    J. M. Harder and D. J. Bacon, Phil. Mag. A54:641 (1986).Google Scholar
  7. 7.
    S. M. Foiles, M. I. Baskes, and M. S. Daw, Phys. Rev. B 33:7983 (1986); Phys. Rev. B 37:10378 (1988).CrossRefGoogle Scholar
  8. 8.
    G. J. Ackland, G. Tichy, V. Vitek, and M. W. Finnis, Phil. Mag. A56:735 (1987).Google Scholar
  9. 9.
    G. J. Ackland and M. W. Finnis, Phil. Mag. A54:301 (1986).Google Scholar
  10. 10.
    C. P. Flynn, “Point Defects and Diffusion”, (Clarendon, Oxford, 1972), p. 6.Google Scholar
  11. 11.
    R. Benedek, J. Phys. F8:1119 (1978).CrossRefGoogle Scholar
  12. 12.
    F. Ducastelle, J. Phys. (Paris) 31:1055 (1970).CrossRefGoogle Scholar
  13. 13.
    Y. Ohta, M. W. Finnis, D. G. Pettifor, and A. P. Sutton, J. Phys. F17:L273 (1987).CrossRefGoogle Scholar
  14. 14.
    S. M. Foiles, Surf. Sci. 191:L779 (1987).CrossRefGoogle Scholar
  15. 15.
    P. Turchi and F. Ducastelle, in: “The Recursion Method and Its Applications”, edited by D. G. Pettifor and D. L. Weaire, (Springer, New York, 1985), p. 104.Google Scholar
  16. 16.
    E. Pearson, T. Takai, T. Halicioglu, and W. A. Tiller, J. Cryst. Growth 70:33 (1984).CrossRefGoogle Scholar
  17. 17.
    F. H. Stillinger and T. A. Weber, Phys. Rev. B 31:5262 (1985).CrossRefGoogle Scholar
  18. 18.
    R. Biswas and D. R. Hamann, Phys. Rev. Lett. 55:2001 (1985).CrossRefGoogle Scholar
  19. 19.
    R. Biswas and D. R. Hamann, Phys. Rev. B 36:6434 (1987).CrossRefGoogle Scholar
  20. 20.
    D. W. Brenner and B. J. Garrison, Phys. Rev. B 34:1304 (1986).CrossRefGoogle Scholar
  21. 21.
    J. Tersoff, Phys. Rev. Lett. 56:632 (1986).CrossRefGoogle Scholar
  22. 22.
    J. Tersoff. Phys. Rev. B 37:6991 (1988).CrossRefGoogle Scholar
  23. 23.
    M. I. Baskes, Phys. Rev. Lett. 59:2666 (1987).CrossRefGoogle Scholar
  24. 24.
    B. W. Dodson, Phys. Rev. B 35:2795 (1987).CrossRefGoogle Scholar
  25. 25.
    K. E. Khow and S. Das Sarma, Phys. Rev. B 38:3318 (1988).CrossRefGoogle Scholar
  26. 26.
    W. A. Harrison, “Electronic Structure and the Properties of Solids”, (W. H. Freeman, San Francisco, 1980), Chapter 7.Google Scholar
  27. 27.
    M. van Schilfgaarde and W. A. Harrison, Phys. Rev. B 33:2653 (1986).CrossRefGoogle Scholar
  28. 28.
    J. C. Phillips, Phys. Rev. 166:832 (1968).CrossRefGoogle Scholar
  29. 29.
    R. M. Martin, Phys. Rev. 186:871 (1969).CrossRefGoogle Scholar
  30. 30.
    Reference 26, Chapter 9.Google Scholar
  31. 31.
    J. A. Moriarty, Phys. Rev. Lett. 55:1502 (1985).CrossRefGoogle Scholar
  32. 32.
    J. A. Moriarty, Phys. Rev. B 38:3199 (1988).CrossRefGoogle Scholar
  33. 33.
    R. J. Harrison, Surf. Sci. 144:215 (1984).CrossRefGoogle Scholar
  34. 34.
    K. W. Jacobsen, J. K. Nørskov, and M. J. Puska, Phys. Rev. B 35:7423 (1987).CrossRefGoogle Scholar
  35. 35.
    C. C. Matthai, P. J. Grout, and N. H. March, J. Phys. Chem. Solids 42:317 (1981).CrossRefGoogle Scholar
  36. 36.
    F. Cyrot-Lackmann, J. Phys. Chem. Solids 29:1235.Google Scholar
  37. 37.
    See articles by R. Haydock, (p. 216) and M. J. Kelley (p. 296), in Ref. 5.Google Scholar
  38. 38.
    E. T. Jaynes, Phys. Rev. 106:620 (1957); Phys. Rev. 108:171 (1957).CrossRefGoogle Scholar
  39. 40.
    R. Collins and A. Wragg, J. Phys. A10:1441 (1977).Google Scholar
  40. 41.
    L. R. Mead and N. Papanicolaou, J. Math. Phys. 25:2404 (1984).CrossRefGoogle Scholar
  41. 42.
    R. H. Brown and A. E. Carlsson, Phys. Rev. B 32:6125 (1985).CrossRefGoogle Scholar
  42. 43.
    K. Hirai and J. Kanamori, J. Phys. Soc. Jpn. 50:2265 (1981).CrossRefGoogle Scholar
  43. 44.
    A. E. Carlsson and N. W. Ashcroft, Phys. Rev. B 27:2101 (1983.CrossRefGoogle Scholar
  44. 45.
    A. E. Carlsson, Phys. Rev. B 32:4866 (1985).CrossRefGoogle Scholar
  45. 46.
    F. Ducastelle and F. Cyrot-Lackmann, J. Phys. Chem Solids 32: 285 (1971).CrossRefGoogle Scholar
  46. 47.
    V. Heine and J. H. Samson, J. Phys. F10:2609 (1980).CrossRefGoogle Scholar
  47. 48.
    V. Heine and J. H. Samson, J. Phys. F13:2155 (1983).CrossRefGoogle Scholar
  48. 49.
    W. A. Harrison, “Solid State Table of the Elements,” Ref. 26.Google Scholar
  49. 50.
    J. Donohue, “The Structures of the Elements”, (Wiley, New York, 1974), Chapter 8.Google Scholar
  50. 51.
    Reference 50, Chapter 9.Google Scholar
  51. 52.
    In typical calculations (see Ref. 42, for example), the ∂UTB/∂µ4 contribution to the Vneff changes sign at Nv ≈ 0.25 and 0.75. In group VI elements Nv < 0.67(=4/6), since not all the electrons reside in the p-band.Google Scholar
  52. 53.
    F. H. Stillinger, T. A. Weber, and R. A. LaViolette, J. Chem. Phys. 85:6460 (1986).CrossRefGoogle Scholar
  53. 54.
    F. Ducastelle and F. Cyrot-Lackmann, J. Phys. Chem. Solids, 31:1295 (1970).CrossRefGoogle Scholar
  54. 55.
    R. B. Phillips and A. E. Carlsson (unpublished).Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • A. E. Carlsson
    • 1
  1. 1.Department of PhysicsWashington UniversitySt. LouisUSA

Personalised recommendations