Prostaglandins, Thromboxane and Leukotrienes in the Control of Mesangial Function

  • Paolo Mené
  • Michael S. Simonson
  • Michael J. Dunn
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 259)


Mesangial cells are intercapillary cells of the kidney glomerulus, serving both smooth muscle and immune effector functions (1–3). Since the first report of contraction of cultured rat mesangial cells by the vasoactive peptides, angiotensin II (ANG II) and arginine vasopressin (AVP) (2,4), considerable interest focused on the hypothesis that mesangial cells may regulate glomerular blood flow and filtration in synergism with afferent and efferent resistances, by altering capillary surface area and hence the ultrafiltration coefficient, Kf (5,6). Changes of capillary surface area might result from mechanical stretching and constriction of vessel walls by surrounding mesangial cells or intraglomerular shunting of blood flow as a result of segmental occlusion of certain loops. Although no definitive evidence of such function has been provided thus far, a number of observations link the mesangial cell to a regulatory role on glomerular hemodynamics, including reports of selective changes of Kf upon induction of glomerular immune injury (7) or infusion of vasoactive agents (8–10). Further support to the concept of mechanical properties of the mesangium comes from studies in freshly isolated rat and human glomeruli, which are rapidly contracted by ANG II, as evaluated by different techniques (11,12).


Mesangial Cell Myosin Light Chain Kinase Inositol Trisphosphate Capillary Surface Area Renal Fluid Electrolyte 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.I. Kreisberg, M. Venkatachalam, D. Troyer, Contractile properties of cultured glomerular mesangial cells, Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol 18):F457–F463 (1985).PubMedGoogle Scholar
  2. 2.
    P.R. Mahieu, J.B. Foidart, C.H. Dubois, C.A. Dechenne, J. Deheneffe, Tissue culture of normal rat glomeruli: contractile activity of the cultured mesangial cells, Invest. Cell Pathol. 3:121–128 (1980).Google Scholar
  3. 3.
    G.E. Striker and L.J. Striker, Biology of disease: glomerular cell culture, Lab. Invest. 53:122–131 (1985).Google Scholar
  4. 4.
    D.A. Ausiello, J.I. Kreisberg, C. Roy, M.J. Karnovski, Contraction of cultured rat glomerular cells of apparent mesangial origin after stimulation with angiotensin II and arginine vasopressin, J. Clin. Invest. 65:754–760 (1980).CrossRefPubMedGoogle Scholar
  5. 5.
    B.M. Brenner, L.D. Dworken, I. Ichikawa, Glomerular ultrafiltration, in: “The Kidney”, B.M. Brenner, F.C. Rector, eds., Philadelphia, W.B. Saunders, pp. 124–144 (1986).Google Scholar
  6. 6.
    L.A. Scharschmidt, E. Lianos, M.J. Dunn, Arachidonate metabolites and the control of renal function, Federation Proc.42:3058–3063 (1983).Google Scholar
  7. 7.
    D.A. Maddox, C.M. Bennett, W.M. Deen, R.J. Glassock, D. Knutson, T.M. Daughterty, B.M. Brenner, Determinants of glomerular filtration in experimental glomerulonephritis in the rat, J. Clin. Invest. 55: 305–318 (1975).CrossRefPubMedGoogle Scholar
  8. 8.
    R.C. Blantz, K.S. Konnen, B.J. Tucker, Angiotensin II effects upon the glomerular microcirculation and ultrafiltration coefficient of the rat, J. Clin. Invest. 57:419–434 (1976).CrossRefPubMedGoogle Scholar
  9. 9.
    I. Ichikawa and B.M. Brenner, Mechanism of action of histamine and histamine antagonists on the glomerular microcirculation in the rat. Circ. Res. 45:737–745 (1979).CrossRefPubMedGoogle Scholar
  10. 10.
    N. Schor, I. Ichikawa, B.M. Brenner, Mechanisms of action of various hormones and vasoactive substances on glomerular ultrafiltration in the rat, Kidney Int. 20:442–451 (1981).CrossRefPubMedGoogle Scholar
  11. 11.
    L.A. Scharschmidt, J.G. Douglas, M.J. Dunn, Angiotensin II and eicosanoids in the control of glomerular size in rat and human, Am. J. Phvsiol. 250 (Renal Fluid Electrolyte Physiol.19):F348–F356 (1986).Google Scholar
  12. 12.
    V. Savin, In vitro effects of angiotensin II on glomerular function, Am. J. Phvsiol. 251 (Renal Fluid Electrolyte Physiol.20):F627–F634 (1986).Google Scholar
  13. 13.
    M.J. Dunn and L.A. Scharschmidt, Prostaglandins modulate the glomerular actions of angiotensin II, Kidney Int. 31 (Suppl.20)S-95–S-101 (1987).Google Scholar
  14. 14.
    R. Loutzenhiser, M. Epstein, C. Horton, P. Sonke, Reversal of renal and smooth muscle actions of the thromboxane mimetic U-44069 by diltiazem, Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19):F619–F626 (1986).PubMedGoogle Scholar
  15. 15.
    L.P. Feigen, B.M. Chapek, J.E. Flemming, J.M. Flemming, P.J. Kadowitz, Renal vascular effects of endoperoxide analogs, prostaglandins and arachidonic acid, Am. J. Physiol. 233 (Heart Circ. Physiol. 1):H573–H579 (1977).PubMedGoogle Scholar
  16. 16.
    J.G. Gerber, E. Ellis, J. Hollifield, A.S. Nies, Effect of prostaglandin endoperoxide analogues on canine renal function, hemodynamics and renin release, Eur. J. Pharmacol. 53:239–246 (1979).CrossRefPubMedGoogle Scholar
  17. 17.
    M. Hamberg, J. Svensson, B. Samuelsson, Thromboxanes: a new group of biologically active compounds derived from prostaglandin endo-peroxides, Proc. Nat. Acad. Sci. USA 72:2994–2998 (1975).CrossRefPubMedGoogle Scholar
  18. 18.
    W.A. Scott, J.M. Zrike, A.L. Hamill, J. Kempe, Z.A. Cohn, Regulation of arachidonic acid metabolism in macrophages, J. Exp. Med. 152: 324–355 (1980).CrossRefPubMedGoogle Scholar
  19. 19.
    W.A. Scott, N.A. Pawlowski, M. Andreach, Z.A. Cohn, Resting macrophages produce distinct metabolites from exogenous arachidonic acid, J. Exp. Med. 155:535–547 (1982).CrossRefPubMedGoogle Scholar
  20. 20.
    E.A. Lianos, G.A. Andres, M.J. Dunn, Glomerular prostaglandin and thromboxane synthesis in rat nephrotoxic serum nephritis. Effects on renal hemodynamics, J. Clin. Invest. 72:1439–1448 (1983).CrossRefPubMedGoogle Scholar
  21. 21.
    T. Okegawa, P.E. Jonas, K. DeSchryver, A. Kawasaki, P. Needleman, Metabolic and cellular alterations underlying the exaggerated renal prostaglandin and thromboxane synthesis in ureter obstruction in rabbits, J. Clin. Invest. 71:81–90 (1983).CrossRefPubMedGoogle Scholar
  22. 22.
    T.M. Coffman, W.E. Yarger, P.E. Klotman, Functional role of thromboxane production by acutely rejecting renal allografts in rats, J. Clin. Invest. 75:1242–1248 (1985).CrossRefPubMedGoogle Scholar
  23. 23.
    C. Patrono, G. Ciabattoni, G. Remuzzi, E. Gotti, S. Bombardieri, O. DiMunno, G. Tartarelli, G.A. Cinotti, B.M. Simonetti, A. Pierucci, Functional significance of renal prostacyclin and thromboxane A2 production in patients with systemic lupus erythematosus, J. Clin. Invest. 76:1011–1018 (1985).CrossRefPubMedGoogle Scholar
  24. 24.
    J.I. Kreisberg, M.J. Karnovsky, L. Levine, Prostaglandin production by homogeneous cultures of rat glomerular epithelial and mesangial cells, Kidney Int. 22:355–359 (1982).CrossRefPubMedGoogle Scholar
  25. 25.
    L.A. Scharschmidt and M.J. Dunn, Prostaglandin synthesis by rat glomerular mesangial cells in culture, J. Clin. Invest. 71:1756–1764 (1983).CrossRefPubMedGoogle Scholar
  26. 26.
    R.A. Lewis and K.F. Austen, The biologically active leukotrienes. Biosynthesis, functions, and pharmacology, J. Clin. Invest. 73:889–897 (1984).CrossRefPubMedGoogle Scholar
  27. 27.
    S. Hammarstroem, Leukotrienes, Ann. Rev. Biochem. 52:355–377 (1983).CrossRefGoogle Scholar
  28. 28.
    E.A. Lianos, M.A. Rahman, M.J. Dunn, Glomerular arachidonate lipoxy-genation in rat nephrotoxic serum nephritis, J. Clin. Invest. 76: 1355–1359 (1985).CrossRefPubMedGoogle Scholar
  29. 29.
    J.E. Stork, M.A. Rahman, M.J. Dunn, Eicosanoids in experimental and human renal disease, Am. J. Med. 80(suppl lA):34–45 (1986).CrossRefPubMedGoogle Scholar
  30. 30.
    B.J. Ballermann, R.A. Lewis, E.J. Corey, K.F. Austen, B.M. Brenner, Identification and characterization of leukotriene C4 receptors in isolated rat renal glomeruli, Circ. Res. 56:324–330 (1985).CrossRefPubMedGoogle Scholar
  31. 31.
    A. Rosenthal, CR. Pace-Asciak, Potent vasoconstriction of the isolated perfused rat kidney by leukotrienes C4 and D4, Can. J. Phvs. Pharmacol. 61:325–328 (1983).CrossRefGoogle Scholar
  32. 32.
    K. Badr, C. Baylis, J. Pfeffer, M. Pfeffer, R.J. Soberman, R.A. Lewis, K.F. Austen, E.J. Corey, B.M. Brenner, Renal and systemic hemodynamic responses to intravenous infusion of leukotriene C4 in the rat, Circ. Res. 54:492–499 (1984).CrossRefPubMedGoogle Scholar
  33. 33.
    S. Bunting, R. Gryglewski, S. Moneada, J.R. Vane, Arterial walls generate from prostaglandin endoperoxides a substance (prostaglandin X) which relaxes strips of mesenteric and coeliac arteries and inhibits platelet aggregation, Prostaglandins 12:897–913 (1976).PubMedGoogle Scholar
  34. 34.
    B.J.R. Whittle and S. Moncada, Pharmacologic interactions between prostacyclin and thromboxanes, Br. Med. Bull. 39:232–238 (1983).PubMedGoogle Scholar
  35. 35.
    S. Bunting, S. Moneada, J.R. Vane, The prostacyclin-thromboxane A2 balance: pathophysiological and therapeutic implications, Br. Med. Bull. 39:271–276 (1983).PubMedGoogle Scholar
  36. 36.
    H. Rasmussen and P.Q. Barrett, Calcium messenger system: an integrated view, Phvsiol. Rev. 64:938–984 (1984).Google Scholar
  37. 37.
    M.J. Berridge, Inositol trisphosphate and diacylglycerol as second messengers, Biochem. J. 220:345–360 (1984).PubMedGoogle Scholar
  38. 38.
    R.S. Adelstein and D.R. Hathaway, Role of calcium and cyclic adenosine 3’:5’ monophosphate in regulating smooth muscle contraction, Am. J. Cardiol. 44:783–787 (1979).CrossRefPubMedGoogle Scholar
  39. 39.
    M.S. Simonson and M.J. Dunn, Leukotriene C4 and D4 contract rat glomerular mesangial cells, Kidney Int. 30:524–531 (1986).CrossRefPubMedGoogle Scholar
  40. 40.
    P. Mene’ and M.J. Dunn, Contractile effects of TxA2 and endoperoxide analogues on cultured rat glomerular mesangial cells, Am. J. Phvsiol. 251 (Renal Fluid Electrolyte Physiol.20):F1029–F1035 (1986).Google Scholar
  41. 41.
    R.A. Armstrong, R.L. Jones, V. Peesapati, S.G. Will, N.H. Wilson, Competitive antagonism at thromboxane receptors in human platelets, Br. J. Pharmacol. 84:595–607 (1985).CrossRefPubMedGoogle Scholar
  42. 42.
    R.A. Armstrong, R.L. Jones, N.H. Wilson, Ligand binding to thromboxane receptors in human platelets: correlation with biological activity, Br. J. Pharmacol. 79:953–964 (1983).CrossRefPubMedGoogle Scholar
  43. 43.
    R. Greenberg, T. Steinbacher, M.F. Haslanger, Thromboxane receptor antagonist properties of SQ 27,427 in the anesthetized guinea pig, Eur. J. Pharmacol. 103:19–24 (1984).CrossRefPubMedGoogle Scholar
  44. 44.
    G. Graff, Preparation of PGG2 and PGH2, in: “Methods in Enzymology”, W. Lands, W. Smith, eds., New York, Academic Press, pp. 376–385 (1982).Google Scholar
  45. 45.
    T. Yoshimoto, S. Yamamoto, M. Okuno, M. Hayaishi, Solubilization and resolution of thromboxane synthesizing systems from microsomes of bovine blood platelets, J. Biol. Chem. 252:5871–5874 (1977).PubMedGoogle Scholar
  46. 46.
    D. Schlondorff, J.A. Satriano, J. Hagege, J. Perez, L. Baud, Effect of platelet activating factor on prostaglandin E2 synthesis, arachi-donic acid release and contraction of cultured rat mesangial cells, J. Clin. Invest. 73:1227–1231 (1984).CrossRefPubMedGoogle Scholar
  47. 47.
    J. Foidart, J. Sraer, F. Delarue, P. Mahieu, R. Ardaillou, Evidence for mesangial glomerular receptors for angiotensin II linked to mesangial contractility, FEBS Lett. 121:333–339 (1980).CrossRefPubMedGoogle Scholar
  48. 48.
    T. Tanaka, Y. Fujiwara, Y. Orita, E. Sasaki, H. Kitamura, H. Abe, The functional characteristics of cultured rat mesangial cell, Japn. Circ. J. 48:1017–1029 (1984).CrossRefGoogle Scholar
  49. 49.
    J.R. Sedor and H.E. Abboud, Histamine modulates contraction and cyclic nucleotides in cultured rat mesangial cells, J. Clin. Invest. 75: 1679–1689 (1985).CrossRefPubMedGoogle Scholar
  50. 50.
    P.C. Singhal, L.A. Scharschmidt, N. Gibbons, R.M. Hays, Contraction and relaxation of cultured mesangial cells on a silicone rubber surface, Kidney Int. 30:862–873 (1986).CrossRefPubMedGoogle Scholar
  51. 51.
    M.A. Venkatachalam and J.I. Kreisberg, Agonist-induced isotonic contraction of cultured mesangial cells after multiple passage, Am. J. Phvsiol. 249 (Cell Physiol.18):C48–C55 (1985).Google Scholar
  52. 52.
    J. Chamley-Campbell, G.R. Campbell, R. Ross, The smooth muscle cell in culture, Phvsiol. Rev. 59:1–61 (1979).Google Scholar
  53. 53.
    H.E. Ives, G.S. Schultz, R.E. Galardy, J.D. Jamieson, Preparation of functional smooth muscle cells from the rabbit aorta, J. Exp. Med. 148:1400–1413 (1978).CrossRefPubMedGoogle Scholar
  54. 54.
    A.K. Harris, P. Wild, D. Stork, Silicone rubber substrates: a “new wrinkle in the study of locomotion, Science 208:177–179 (1980).CrossRefPubMedGoogle Scholar
  55. 55.
    D.E. Mais, D.L. Saussy, Jr., A. Chaikouni, P.J. Kochel, D.R. Knapp, N. Hamanaka, P.V. Halushka, Pharmacologic characterization of human and canine thromboxane A2/prostaglandin H2 receptors in platelets and blood vessels : evidence for different receptors, J. Pharmacol. Exp. Therap. 233:418–424 (1985).Google Scholar
  56. 56.
    R. Barnett, P. Goldwasser, L.A. Scharschmidt, D. Schlondorff, Effects of leukotrienes on isolated rat glomeruli and cultured mesangial cells, Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F838–F844 (1986).PubMedGoogle Scholar
  57. 57.
    J.I. Kreisberg, M.A. Venkatachalam, P.Y. Patel, Cyclic AMP-associated shape change in mesangial cells and its reversal by prostaglandin E2, Kidnev Int. 25:874–879 (1984).CrossRefGoogle Scholar
  58. 58.
    J.B. Foidart and P. Mahieu, Glomerular mesangial cell contractility in vitro is controlled by an angiotensin-prostaglandin balance, Mol. Cell Endocrinol. 47:163–173 (1986).CrossRefGoogle Scholar
  59. 59.
    L.A. Scharschmidt, M. Simonson, M.J. Dunn, Glomerular prostaglandins, angiotensin II, and nonsteroidal anti-inflammatory drugs, Am. J. Med. 81 (suppl.2B):30–42 (1986).CrossRefPubMedGoogle Scholar
  60. 60.
    R.P. Kimberly, R.E. Boden, H.R. Keiser, P.H. Plotz, Reduction of renal function by newer nonsteroidal anti-inflammatory drugs, Am. J. Med. 64:804–807 (1978).CrossRefPubMedGoogle Scholar
  61. 61.
    M.J. Dunn, Nonsteroidal antiinflammatory drugs and renal function. Ann. Rev. Med. 35:411–428 (1984).CrossRefPubMedGoogle Scholar
  62. 62.
    G. Ciabattoni, G.A. Cinotti, A. Pierucci, B.M. Simonetti, M. Manzi, F. Pugliese, P. Barsotti, G. Pecci, F. Taggi, C. Patrono, Effects of sulindac and ibuprofen in patients with chronic glomerular disease. Evidence for the dependence of renal function on prostacyclin, N. Eng. J. Med. 310:279–283 (1984).CrossRefGoogle Scholar
  63. 63.
    C. Patrono and M.J. Dunn, The clinical significance of inhibition of renal prostaglandin synthesis, Kidney Int. 32:1–12 (1987).CrossRefPubMedGoogle Scholar
  64. 64.
    R. Vriesendorp, A.J.M. Donker, D. de Zeeuw, P.E. de Jong, G.K. van der Hem, J.R.H. Brentjens, Effects of nonsteroidal anti-inflammatory drugs on proteinuria, Am. J. Med. 81 (suppl. 2B) : 84–94 (1986).CrossRefPubMedGoogle Scholar
  65. 65.
    B.M. Brenner, Nephron adaptation to renal injury or ablation, Am. J. Phvsiol. 249 (Renal Fluid Electrolyte Physiol.19):F324–F337 (1985).Google Scholar
  66. 66.
    L.D. Brace, D.L. Venton, G.C. Le Breton, Thromboxane A2/prostaglandin H2 mobilizes calcium in human blood platelets, Am. J. Phvsiol. 249 (Heart Circ. Physiol.18):H1–H7 (1985).Google Scholar
  67. 67.
    K. Fukuo, S. Morimoto, E. Koh, S. Yukawa, H. Tsuchiya, S. Imanaka, H. Yamamoto, T. Onoshi, Y. Kumahara, Effects of prostaglandins on the cytosolic free calcium concentration in vascular smooth muscle cells, Biochem. Biophvs. Res. Comm. 136:247–252 (1986).CrossRefGoogle Scholar
  68. 68.
    G.R. Dubyak and M.B. De Young, Intracellular Ca++ mobilization activated by extracellular ATP in Ehrlich ascites tumor cells, J. Biol. Chem. 260:10653–10661 (1985).PubMedGoogle Scholar
  69. 69.
    G. Grynkiewicz, M. Poenie, R.Y. Tsien, A new generation of Ca2+ indicators with greatly improved fluorescence properties, J. Biol. Chem. 260:3440–3450 (1985).PubMedGoogle Scholar
  70. 70.
    P. Mene’, G.R. Dubyak, A. Scarpa, M.J. Dunn, Stimulation of cytosolic free calcium and inositol phosphates by prostaglandins in cultured rat mesangial cells, Biochem. Biophys. Res. Comm. 142:579–586 (1987).CrossRefGoogle Scholar
  71. 71.
    J.B. Smith, Angiotensin-receptor signaling in cultured vascular smooth muscle cells, Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19):F759–F769 (1986).PubMedGoogle Scholar
  72. 72.
    A.V. Somlyo, M. Bond, A.P. Somlyo, A. Scarpa, Inositol trisphosphate-induced calcium release and contraction in vascular smooth muscle, Proc. Natl. Acad. Sci. USA 82:5231–5235 (1985).CrossRefPubMedGoogle Scholar
  73. 73.
    J.V. Bonventre, K.L. Skorecki, J.I. Kreisberg, J.Y. Cheung, Vasopressin increases cytosolic free calcium concentration in glomerular mesangial cells, Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20):F94–F102 (1986).PubMedGoogle Scholar
  74. 74.
    A. Hassid, N. Pidikiti, D. Gamero, Effects of vasoactive peptides on cytosolic calcium in cultured mesangial cells, Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20):F1018–F1028 (1986).PubMedGoogle Scholar
  75. 75.
    M. Deleers, P. Grognet, R. Brasseur, Structural considerations for calcium ionophoresis by prostaglandins, Biochem. Pharmacol. 34: 3831–3836 (1985).CrossRefPubMedGoogle Scholar
  76. 76.
    M.J. Berridge and R.F. Irvine, Inositol trisphosphate, a novel second messenger in cellular signal transduction, Nature (London) 312: 315–321 (1984).CrossRefGoogle Scholar
  77. 77.
    J.R. Williamson, Role of inositol lipid breakdown in the generation of intracellular signals, Hypertension 8 [Suppl. II]:II-140–II-156 (1986).Google Scholar
  78. 78.
    S. Muallem, M. Schoeffield, S. Pando1, G. Sachs, Inositol trisphosphate modification of ion transport in rough endoplasmic reticulum, Proc. Natl. Acad. Sci. USA 82:4433–4437 (1985).CrossRefPubMedGoogle Scholar
  79. 79.
    B.C. Berk, T.A. Brock, M.A. Gimbrone, R.W. Alexander, Early agonist-mediated ionic events in cultured vascular smooth muscle cells, J. Biol. Chem. 262:5065–5072 (1987).PubMedGoogle Scholar
  80. 80.
    P.T. Hawkins, L. Stephens, C.P. Downes, Rapid formation of inositol 1, 3, 4, 5-tetrakisphosphate and inositol 1,3,4-trisphosphate in rat parotid glands may both result indirectly from receptor-stimulated release of inositol 1, 4, 5-trisphosphate from phosphatidylinositol 4, 5-bisphosphate, Biochem. J. 238:507–516 (1986).PubMedGoogle Scholar
  81. 81.
    R.F. Irvine and R.M. Moor, Micro-injection of inositol 1, 3, 4, 5-tetrakisphosphate activates sea urchin eggs by a mechanism dependent on external Ca2+, Biochem. J. 240:917–920 (1986).PubMedGoogle Scholar
  82. 82.
    R.S. Adelstein and E. Eisenberg, Regulation and kinetics of the actinmyosin-ATP interaction, Ann. Rev. Biochem. 49:921–956 (1980).CrossRefPubMedGoogle Scholar
  83. 83.
    E.D. Korn, Actin polymerization and its regulation by proteins from nonmuscle cells, Phvsiol. Rev. 62:672–737 (1982).Google Scholar
  84. 84.
    Y. Nishizuka, Studies and perspectives of protein kinase C, Science 233:305–312 (1986).CrossRefPubMedGoogle Scholar
  85. 85.
    T. Hunter and J.A. Cooper, Protein-tyrosine kinases, Ann. Rev. Biochem. 54:897–930 (1985).CrossRefPubMedGoogle Scholar
  86. 86.
    D.A. Troyer, O.F. Gonzalez, J.G. Douglas, J.I. Kreisberg, Phorbol ester inhibits arginine vasopressin activation of phospholipase C and promotes contraction of and prostaglandin production by cultured mesangial cells, Biochem. J. (in press) (1988).Google Scholar
  87. 87.
    J.I. Kreisberg, M.A. Venkatachalam, R.A. Radnik, P.Y. Patel, Role of myosin light-chain phosphorylation and microtubules in stress fiber morphology in cultured mesangial cells, Am. J. Phvsiol. 249 (Renal Fluid Electrolyte Physiol. 18) :F227–F235 (1985).Google Scholar
  88. 88.
    R.R. Gorman, S. Bunting, O.V. Miller, Modulation of human platelet adenylate cyclase by prostacyclin (PGX), Prostaglandins 13:377–388 (1977).PubMedGoogle Scholar
  89. 89.
    N.K. Hopkins and R.R. Gorman, Regulation of endothelial cell cyclic nucleotide metabolism by prostacyclin, J. Clin. Invest. 67:540–546 (1981).CrossRefPubMedGoogle Scholar
  90. 90.
    D. Oliva, A. Noe’, S. Nicosia, F. Bernini, R. Fumagalli, B.J.R. Whittle, S. Moneada, J.k. Vane, Prostacyclin-sensitive adenylate cyclase in cultured myocytes: differences between rabbit aorta and mesenteric artery, Eur. J. Pharmacol. 105:207–213 (1984).CrossRefPubMedGoogle Scholar
  91. 91.
    E.G. Krebs and J.A. Beavo, Phosphorylation-dephosphorylation of enzymes, Ann. Rev. Biochem. 48:923–959 (1979).CrossRefPubMedGoogle Scholar
  92. 92.
    R. Barnett, P.C. Singhal, L.A. Scharschmidt, D. Schlondorff, Dopamine attenuates the contractile response to angiotensin II in isolated rat glomeruli and cultured mesangial cells, Cir. Res. 59:529–533 (1986).CrossRefGoogle Scholar
  93. 93.
    J.N. Fain, R.H. Pointer, W.F. Ward, Effects of adenosine nucleotides on adenylate cyclase, phosphodiesterase, cyclic adenosine monophosphate accumulation and lipolysis in fat cells, J. Biol. Chem. 247: 6866–6872 (1972).PubMedGoogle Scholar
  94. 94.
    R.J. Haslam, M.M.L. Davidson, J.V. Desjardin, Inhibition of adenylate cyclase by adenosine analogues in preparations of broken and intact platelets, Biochem. J. 176:83–95 (1978).PubMedGoogle Scholar
  95. 95.
    R.A. Coleman and I. Kennedy, Characterization of the prostanoid receptors mediating contraction of guinea-pig isolated trachea, Prostaglandins 29:363–375 (1985).PubMedGoogle Scholar
  96. 96.
    J.E. Stork and M.J. Dunn, Hemodynamic roles of thromboxane A2 and prostaglandin E2 in glomerulonephritis, J. Pharm. Exp. Ther. 233:672–678 (1985).Google Scholar
  97. 97.
    M.A. Rahman, S.N. Emancipator, M.J. Dunn, Immune complex effects on glomerular eicosanoid production and renal hemodynamics, Kidney Int. 31:1317–1326 (1987).CrossRefPubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Paolo Mené
    • 1
    • 2
  • Michael S. Simonson
    • 1
    • 2
  • Michael J. Dunn
    • 1
    • 2
  1. 1.Departments of Medicine and PhysiologyCase Western Reserve University School of MedicineClevelandUSA
  2. 2.Division of NephrologyUniversity Hospitals of ClevelandUSA

Personalised recommendations