The Biosynthesis and Actions of Prostaglandins in the Renal Collecting Tubule and Thick Ascending Limb

  • William L. Smith
  • William K. Sonnenburg
  • Margaret L. Allen
  • Tsuyoshi Watanabe
  • Jianhua Zhu
  • E. A. El-Harith
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 259)


The intent of this review is to describe our current perceptions of the biosynthesis and function of prostaglandins in the renal collecting tubule and thick ascending limb of Henle’s loop. Although the presentation will have a biochemical bias, we have attempted to couch our discussion in the context of the regulation of water reabsorption by the kidney. Specifically, our goal will be to summarize the data that support the model depicted in Fig. 1.


Adenylate Cyclase Tubule Cell Pertussis Toxin cAMP Formation Thick Ascending Limb 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.J. Dunn, J.F. Liard, F. Dray, Basal and stimulated rates of renal secretion and excretion of prostaglandins E2, Fα, and 13, 14- dihy-dro-15-keto Fα in the dog, Kidney Int. 13:136–143 (1978).CrossRefGoogle Scholar
  2. 2.
    S.H. Ferreira and J.R. Vane, Prostaglandins: their disappearance from and release into the circulation, Nature 216:868–873 (1967).PubMedCrossRefGoogle Scholar
  3. 3.
    W.L. Smith, Cellular and subcellular compartmentalization of prostaglandin and thromboxane synthesis, in: “Biochemistry of Arachidonic Acid Metabolism,” W.E.M. Lands, ed., Martinus Nijhoff, Boston, pp. 79–93 (1985).Google Scholar
  4. 4.
    J.B. Lee, K. Crowshaw, B.H. Takman, K.A. Attrep, The identification of prostaglandins E2, F and A2 from rabbit kidney medulla, Biochem. J. 105:1251–1260 (1967).PubMedGoogle Scholar
  5. 5.
    E.G. Daniels, J.W. Hinman, B.E. Leach and E.E. Muirhead, Identification of prostaglandin E2 as the principal vasodepressor lipid of rabbit renal medulla, Nature 215:1298–1299 (1967).PubMedCrossRefGoogle Scholar
  6. 6.
    M. Hamberg, Biosynthesis of prostaglandins in the renal medulla of rabbit, FEBS Lett. 5:127–130 (1969).PubMedCrossRefGoogle Scholar
  7. 7.
    K. Crowshaw, Prostaglandin biosynthesis from endogenous precursors in rabbit kidney, Nature New Biol. 231:240–242 (1971).PubMedGoogle Scholar
  8. 8.
    J.B. Lee, Renal homeostasis and the hypertensive state: a unifying hypothesis, in: “The Prostaglandins,” Vol. I, P.W. Ramwell, ed., Plenum Press, New York, pp. 133–187 (1973).CrossRefGoogle Scholar
  9. 9.
    M.J. Dunn and V.L. Hood, Prostaglandins and the kidney, Am. J. Physiol. 233:F169–F184 (1977).Google Scholar
  10. 10.
    E.E. Muirhead, G.B. Brown, G.S. Germain, B.E. Leach, The renal medulla as an antihypertensive organ, J. Lab. Clin. Invest. 76:641–649 (1970).Google Scholar
  11. 11.
    A.R. Whorton, M. Smigel, J.A. Oates, J.C. Frohlich, Regional differences in prostaglandin formation by the kidney: prostacyclin is a major prostaglandin of the renal cortex, Biochem. Biophys. Acta 529:176–180 (1978).PubMedCrossRefGoogle Scholar
  12. 12.
    W.L. Smith, D.L. DeWitt, M.L. Allen, Bimodal distribution of the prostaglandin I2 synthase antigen in smooth muscle cells, J. Biol. Chem. 258:5922–5926 (1983).PubMedGoogle Scholar
  13. 13.
    J.C. McGiff, Interactions of renal prostaglandins with the renin-angiotensin and kallekrein-kinin systems, in: “Prostaglandins in Cardiovascular and Renal Function,” A. Scriabine, A.M. Lefer, and F.A. Kuehl, Jr., eds., Spectrum Publications, New York, pp. 387–398 (1980).Google Scholar
  14. 14.
    F.H.A. Janszen and A.H. Nugteren, A histochemical study of the prostaglandin biosynthesis in the urinary system of rabbit, guinea pig, goldhamster and rat, in: “Advances in the Biosciences,” S. Bergstrom, ed., Pergamon, New York, pp. 287–292 (1973).Google Scholar
  15. 15.
    W.L. Smith and G.P. Wilkin, Immunochemistry of prostaglandin endoperoxide-forming cyclooxygenase: the detection of the cycloooxygenase in rat, rabbit and guinea pig kidneys by immunofluorescence, Prostaglandins 13:873–892 (1977).PubMedGoogle Scholar
  16. 16.
    W.L. Smith and T.G. Bell, Immunohistochemical localization of the prostaglandin- forming cyclooxygenase in renal cortex, Am. J. Physiol. 235: F451–F457 (1978).PubMedGoogle Scholar
  17. 17.
    W.L. Smith, F.C. Grenier, T.G. Bell, G.P. Wilkin, Cellular distribution of enzymes involved in prostaglandin metabolism in the mammalian kidney, in: “Prostaglandins in Cardiovascular and Renal Function,” A. Scriabine, A.M. Lefer and F.A. Kuehl, Jr., eds., Spectrum Publications, New York, pp. 71–91 (1980).Google Scholar
  18. 18.
    W.L. Smith, F.C. Grenier, D.L. DeWitt, A. Garcia-Perez, T.G. Bell, Cellular compartmentalization of the biosynthesis and function of PGE2 and PGI2 in the renal medulla, in: “Prostaglandins and the Kidney,” M.J. Dunn and C. Patrono, eds., Plenum Publishing Co., New York, pp. 27–39 (1983).CrossRefGoogle Scholar
  19. 19.
    M. Hemler, W.E.M. Lands, W.L. Smith, Purification of the cyclooxygenase that forms prostaglandins. Demonstration of two forms of iron in the holoenzyme, J. Biol. Chem. 251:5575–5579 (1976).PubMedGoogle Scholar
  20. 20.
    M.G. Currie and P. Needleman, Renal arachidonic acid metabolism, Ann. Rev. Physiol. 46:327–341 (1984).CrossRefGoogle Scholar
  21. 21.
    N. Farman, P. Pradelles, J.P. Bonvalet, Determination of prostaglandin E2 synthesis along rabbit nephron by enzyme immunoassay, Am. J. Physiol. 251:F238–F244 (1986).PubMedGoogle Scholar
  22. 22.
    M.A. Kirschenbaum, A.G. Lowe, W. Trizna, L.G. Fine, Regulation of vasopressin action by prostaglandins, J. Clin. Invest. 70:1193–1204 (1982).PubMedCrossRefGoogle Scholar
  23. 23.
    D. Schlondorff, J.A. Satriano, V.W. Folkert, J. Eveloff, Prostaglandin synthesis by isolated collecting tubules from adult and neonatal rabbits, Am. J. Physiol. 248:F134–F144 (1985).PubMedGoogle Scholar
  24. 24.
    F.C. Grenier and W.L. Smith, Formation of 6-keto-PGF by collecting tubule cells isolated from rabbit renal papillae, Prostaglandins 16: 759–772 (1978).Google Scholar
  25. 25.
    D. Schlondorff, R. Zanger, J.A. Satriano, V.W. Folkert, J. Eveloff, Prostaglandin synthesis by isolated cells from the outer medulla and from the thick ascending loop of Henle of rabbit kidney, J. Pharmacol. Exp. Therap. 223:120–124 (1982).Google Scholar
  26. 26.
    J. Sraer, J. Foidart, D. Chansel, P. Mahieu, B. Kourznetzova, R. Ardaillou, Prostaglandin synthesis by mesangial and epithelial glomerular cultured cells, FEBS Lett. 104:420–424 (1979).PubMedCrossRefGoogle Scholar
  27. 27.
    M.L. Allen, W.K. Sonnenburg, M. Bumatowska-Hieden, W.S. Spielman, W.L. Smith, Immunodissection of cortical and medullary thick ascending limb cells from rabbit kidney, Am. J. Physiol, submitted.Google Scholar
  28. 28.
    A. Hassid, M. Konieczkowski, M. Dunn, Prostaglandin synthesis in isolated glomeruli, Proc. Nat. Acad. Sci. U.S.A. 76:1155–1159 (1979).CrossRefGoogle Scholar
  29. 29.
    F.C. Grenier and W.L. Smith, Formation of 6-keto-PGF by collecting tubule cells isolated from rabbit renal papillae, Prostaglandins 16:759–772 (1978).Google Scholar
  30. 30.
    F.C. Grenier, T.E. Rollins, W.L. Smith, Kinin-induced prostaglandin synthesis by renal papillary collecting tubule cells in culture, Am. J. Physiol. 241:F94–F104 (1981).PubMedGoogle Scholar
  31. 31.
    Y. Tanaka, S.L. Ward, W.L. Smith, Immunochemical and kinetic evidence for two different prostaglandin H-prostaglandin E isomerases in sheep vesicular gland microsomes, J. Biol. Chem. 262:1374–1381 (1987).PubMedGoogle Scholar
  32. 32.
    A.J. Marcus, B.B. Weksler, E.A. Jaffe, M.J. Broekman, Synthesis of prostacyclin from platelet-derived endoperoxide by cultured human endothelial cells, J. Clin. Invest. 66:979–983 (1980).PubMedCrossRefGoogle Scholar
  33. 33.
    J.B. Stokes, Integrated actions of renal medullary prostaglandins in the control of water excretion, Am. J. Physiol. 240:F471–F480 (1981).PubMedGoogle Scholar
  34. 34.
    V.L. Schuster, J.P. Kokko, H.R. Jacobson, Interactions of lysyl-bradykinin and anti-diuretic hormone in the rabbit cortical collecting tubule, J. Clin. Invest. 73:1659–1669 (1984).PubMedCrossRefGoogle Scholar
  35. 35.
    A. Garcia-Perez and W.L. Smith, Use of monoclonal antibodies to isolate cortical collecting tubule cells: AVP induces PGE release, Am. J. Physiol. 244:C211–C220 (1983).PubMedGoogle Scholar
  36. 36.
    A. Garcia-Perez and W.L. Smith, Apical-basolateral membrane asymmetry in canine cortical collecting tubule cells: bradykinin, arginine vasopressin, prostaglandin E2 interrelationships, J. Clin. Invest. 74: 63–74 (1984).PubMedCrossRefGoogle Scholar
  37. 37.
    M. Sato and M.J. Dunn, Interactions of vasopressin, prostaglandins, and cAMP in rat renal papillary collecting tubule cells in culture, Am. J. Physiol. 247:F423–F433 (1984).PubMedGoogle Scholar
  38. 38.
    W.S. Spielman, W.K. Sonnenburg, M.L. Allen, L.J. Arend, K. Gerozissis, W.L. Smith, Immunodissection and culture of rabbit cortical collecting tubule cells, Am. J. Physiol. 251:F348–F357 (1986).PubMedGoogle Scholar
  39. 39.
    J.L. Stokes, Modulation of vasopressin-induced water permeability of the cortical collecting tubule by endogenous and exogenous prostaglandins, Mineral Electrolyte Metab. 11:240–248 (1985).Google Scholar
  40. 40.
    A.W. Cuthbert, P.V. Halushka, H.S. Margolius, J.A. Spayne, Mediators of the secretory response to kinins, Br. J. Pharmacol. 82:597–607 (1984).PubMedCrossRefGoogle Scholar
  41. 41.
    W.L. Smith, Prostaglandin biosynthesis and its compartmentalization in vascular smooth muscle and endothelial cells, Ann. Rev. Physiol. 48: 251–262 (1986).CrossRefGoogle Scholar
  42. 42.
    L.A. Bito and R.A. Baroody, Impermeability of rabbit erythrocytes to prostaglandins, Am. J. Physiol. 229:1580–1584 (1975).PubMedGoogle Scholar
  43. 43.
    J.J. Irish, Secretion of prostaglandin E2 by rabbit proximal tubules, Am. J. Physiol. 237:F268–F273 (1979).PubMedGoogle Scholar
  44. 44.
    S. Moneada, R. Korbut, S. Bunting, J.R. Vane, Prostacyclin is not a circulating hormone, Nature 273:767–769 (1978).CrossRefGoogle Scholar
  45. 45.
    J.J. Grantham and J. Orloff, Effect of prostaglandin E1 on the permeability response of the isolated collecting tubule to vasopressin, adenosine 3′,5′-monophosphate, and theophylline, J. Clin. Invest. 47: 1154–1161 (1968).PubMedCrossRefGoogle Scholar
  46. 46.
    J.S. Handler and J. Orloff, Antidiuretic hormone, Ann. Rev. Physiol. 43: 611–624 (1981).CrossRefGoogle Scholar
  47. 47.
    T.R. Beck and M.J. Dunn, The relationship of antidiuretic hormone and renal prostaglandins, Mineral Electrolyte Metab. 6:46–59 (1981).Google Scholar
  48. 48.
    D. Steinberg, M. Vaughan, P.J. Nestel, O. Strand, S. Bergstrom, Effects of prostaglandins on hormone-induced mobilization of free fatty acids, J. Clin. Invest. 43:1533–1540 (1963).CrossRefGoogle Scholar
  49. 49.
    R.W. Butcher and C.E. Baird, Effects of prostaglandins on adenosine 3′,5′-monophosphate levels in fat and other tissues, J. Biol. Chem. 243:1713–1717 (1968).PubMedGoogle Scholar
  50. 50.
    R.M. Edwards, B.A. Jackson, T.P. Dousa, ADH-sensitive cAMP system in papillary collecting duct: effect of osmolality and PGE2, Am. J. Physiol. 240:F311–F318 (1981).PubMedGoogle Scholar
  51. 51.
    S. Torikai and K. Kurokawa, Effect of PGE2 on vasopressin-dependent cell cAMP in isolated single nephron segments, Am. J. Physiol. 245: F58–F66 (1983).PubMedGoogle Scholar
  52. 52.
    K. Yatsunami, A. Ichikawa, K. Tomita, Accumulation of adenosine 3′,5′-monophosphate induced by prostaglandin E2 binding to mastocytoma P-815 cells, Biochem. Pharmacol. 11:1325–1332 (1981).CrossRefGoogle Scholar
  53. 53.
    P. Menè, G.R. Dubyak, A. Scarpa, M.J. Dunn, Stimulation of cytosolic free calcium and inositol phosphates by prostaglandins in cultured rat mesangial cells, Biochem. Biophys. Res. Comm. 142(2): 579–586 (1987).PubMedCrossRefGoogle Scholar
  54. 54.
    R.A. Coleman and I. Kennedy, Characterization of the prostanoid receptors mediating contraction of guinea pig isolated trachea, Prostaglandins 29:363–375 (1985).PubMedGoogle Scholar
  55. 55.
    R.A. Coleman, P.P.A. Humphrey, I. Kennedy, Prostanoid receptors in smooth muscle: further evidence for a proposed classification, in: “Trends in Autonomic Pharmacology,” Vol. 3, Kalsner, S., ed., Taylor and Francis Publishing, London, pp. 35–49 (1985).Google Scholar
  56. 56.
    D.A. Ausiello and J.V. Bonventre, Calcium and calmodulin as mediators of hormone action and transport events, Sem. in Nephrol. 4:134–143 (1984).Google Scholar
  57. 57.
    V.C. Manganiello, T. Yamamoto, M. Lin, M.L. Elks, M. Vaughan, Regulation of specific forms of cyclic nucleotide phosphodiesterases in cultured cells, Adv. Cyclic Nucleotide Res. 16:291–301 (1984).Google Scholar
  58. 58.
    I.L.O. Buxton and L.L. Brunton, Action of the cardiac α1-adrenergic receptor. Activation of cAMP degradation, J. Biol. Chem. 260:6733–6737 (1985).PubMedGoogle Scholar
  59. 59.
    W.L. Smith, W.K. Sonnenburg, T. Watanabe, K. Umegaki, Mechanism of action of prostaglandin E2 and prostaglandin F2 : PGE and PGE receptors, in: “Eicosanoids in the Cardiovascular and Renal Systems,” P.V. Halushka, ed., MTP Press, Lancaster, in press.Google Scholar
  60. 60.
    W.L. Smith and A. Garcia-Perez, A two receptor model for the mechanism of action of prostaglandins in the renal collecting tubule, in: “Prostaglandins, Leukotrienes and Lipoxins,” J.M. Bailey, ed., Plenum Publishing, New York, pp. 35–45 (1985).CrossRefGoogle Scholar
  61. 61.
    B.B. Clark and R.W. Butcher, Desensitization of adenylate cyclase in cultured fibroblasts with prostaglandin E1 and epinephrine, J. Biol. Chem. 254:9373–9378 (1979).PubMedGoogle Scholar
  62. 62.
    S. Kassis and P.H. Fishman, Different mechanism of desensitization of adenylate cyclase by isoproterenol and prostaglandin E1 in human fibroblasts: role of regulatory components in desensitization, J. Biol. Chem. 257:5312–5318 (1982).PubMedGoogle Scholar
  63. 63.
    D.R. Sibley and R.J. Lefkowitz, Molecular mechanism of receptor desensitization using the β-adrenergic receptor-coupled adenylate cyclase system as a model, Nature 317:124–129 (1985).PubMedCrossRefGoogle Scholar
  64. 64.
    T. Watanabe, K. Umegaki, W.L. Smith, Association of a solubilized prostaglandin E2 receptor from renal medulla with a pertussis toxin-reactive guanine nucleotide regulatory protein, J. Biol. Chem. 261:13430–13439 (1986).PubMedGoogle Scholar
  65. 65.
    R. Grandt, K. Aktories, K.H. Jakobs, Guanine nucleotides and monovalent cations increase agonist affinity of prostaglandin E2 receptors in hamster adipocytes, Mol. Pharmacol. 22:320–326 (1982).PubMedGoogle Scholar
  66. 66.
    J.A. Garcia-Sainz, Decreased sensitivity to α2 adrenergic amines, adenosine and prostaglandins in white fat cells from hamsters treated with pertussis toxin, FEBS Lett. 126:306–308 (1981).PubMedCrossRefGoogle Scholar
  67. 67.
    R.J. Anderson, P.D. Wilson, M.A. Dillingham, R. Breckon, U. Schwertschlaf, J.A. Garcia-Sainz, Pertussis toxin reverses prostaglandin E2 inhibition of arginine vasopressin (AVP) and forskolin in rabbit collecting tubular epithelium, (Abstract), Am. Soc. Nephrol. Mtg. 154, (1984).Google Scholar
  68. 68.
    J.W. Regan, H. Nakata, R.M. DeMarinis, M.G. Caron, R.J. Lefkowitz, Purification and characterization of the human platelet α2-adrenergic receptor, J. Biol. Chem. 261:3894–3900 (1986).PubMedGoogle Scholar
  69. 69.
    R.A. Cerione, J.W. Regan, H. Nakata, J. Codina, J.L. Benovic, P. Gierschik, R.L. Somers, A.M. Spiegel, L. Birnbaumer, R.J. Lefkowitz, M.G. Caron, Functional reconstitution of the α2-adrenergic receptor with guanine nucleotide regulatory proteins in phospholipid vesicles, J. Biol. Chem. 261:3901–3909 (1986).PubMedGoogle Scholar
  70. 70.
    T. Katada, G.M. Bokoch, J.K. Northup, M. Ui, A.G. Gilman, The inhibitory guanine nucleotide-binding regulatory component of adenylate cyclase: properties and function of the purified protein, J. Biol. Chem. 259:3568–3577 (1984).PubMedGoogle Scholar
  71. 71.
    T. Katada, G.M. Bokoch, M.D. Smigel, M. Ui, A.G. Gilman, The inhibitory guanine nucleotide-binding regulatory component of adenylate cyclase: Subunit dissociation and the inhibition of adenylate cyclase in S49 cyc and wild type membranes, J. Biol. Chem. 260:3477–3483 (1985).Google Scholar
  72. 72.
    M.L. Elks, M. Jackson, V.C. Manganiello, M. Vaughan, Effect of N6-(L-2-phenylisopropyl)adenosine and insulin on cAMP metabolism in 3T3-L1 adipocytes, Am. J. Physiol. 252:C342–C348 (1987).PubMedGoogle Scholar
  73. 73.
    R.M. Culpepper and T.E. Andreoli, Interactions among prostaglandin E2, antidiuretic hormone, and cyclic adenosine monophosphate in modulating Cl- absorption in single mouse medullary thick ascending limbs of Henle, J. Clin. Invest. 71:1588–1601 (1983).PubMedCrossRefGoogle Scholar
  74. 74.
    S. Hebert and T.E. Andreoli, Control of NaCl transport in the thick ascending limb, Am. J. Physiol. 246:F745–F756 (1984).PubMedGoogle Scholar
  75. 75.
    R.M. Culpepper, Pertussis toxin blunts PGE2 inhibition of ADH-stimulated Ve in mouse mTALH, Kidney Int. 27:255 (1985).Google Scholar
  76. 76.
    J.L. Stokes, Personal communication.Google Scholar
  77. 77.
    S. Torikai and K. Kurokawa, Distribution of prostaglandin E2-sensitive adenylate cyclase along the rat nephron, Prostaglandins 21:427–438 (1981).PubMedGoogle Scholar
  78. 78.
    R.J. Lefkowitz, D. Mullikin, C.L. Wood, T.B. Gore, C. Mukherjee, Regulation of prostaglandin receptors by prostaglandins and guanine nucleotides in frog erythrocytes, J. Biol. Chem. 252:5295–5303 (1977).PubMedGoogle Scholar
  79. 79.
    H.A. Lester, M.L. Steer, A. Levitzki, Prostaglandin-stimulated GTP hydrolysis associated with activation of adenylate cyclase in human platelet membranes, Proc. Nat. Acad. Sci. U.S.A. 79:719–723 (1982).CrossRefGoogle Scholar
  80. 80.
    I. Teitelbaum, J.N. Mansour, T. Berl, Effect of cAMP on prostaglandin E2 production in cultured rat inner medullary collecting tubule cells, Am. J. Physiol. 251:F671–F677 (1986).PubMedGoogle Scholar
  81. 81.
    W.G. Tarpley, N.K. Hopkins, R.R. Gorman, Reduced hormone-stimulated adenylate cyclase activity in NIH-3T3 cells expressing the EJ human bladder ras oncogene, Proc. Nat. Acad. Sci. U.S.A. 83:3703–3707 (1986).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • William L. Smith
    • 1
  • William K. Sonnenburg
    • 1
  • Margaret L. Allen
    • 1
  • Tsuyoshi Watanabe
    • 1
  • Jianhua Zhu
    • 1
  • E. A. El-Harith
    • 1
  1. 1.Department of BiochemistryMichigan State UniversityEast LansingUSA

Personalised recommendations