The Renal Cytochrome P450 System Generates Novel Arachidonic Acid Metabolites

  • Michal Schwartzman
  • Mairead A. Carroll
  • David Sacerdoti
  • Nader G. Abraham
  • John C. McGiff
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 259)


The generation of prostaglandins and other oxygenated metabolites of arachidonic acid (AA) is a complex process initiated by the release of ester-ified AA from cellular lipids. Once liberated from membrane lipids by diverse stimuli (peptide hormones, neurotransmitters and mechanical disruption), the free AA is rapidly metabolized. Metabolism of AA involves three pathways: (a) cyclooxygenase, leading to the formation of prostaglandins, thromboxane A2 (TxA2), and prostacyclin (PGI2); (b) lipoxygenases, leading to the formation of hydroxy- and dihydroxyeicosatetraenoic acids (HETEs and diHETEs) and leukotrienes; (c) cytochrome P450-dependent monoxy-genase system which metabolizes AA by an NADPH-dependent mechanism to a variety of oxygenated products such as HETEs, epoxyeicosatrienoic acids or epoxides (EETs) and their hydrolysis products, the dihydroxyeicosatrienoic acids or diols (DHTs) as well as ω and ω-1 hydroxylated acids (1–4). The pattern of AA metabolism in the kidney is distinct and AA metabolites participate in integrated renal function. Among the structures that metabolize AA via cyclooxygenase are collecting tubules (5), glomeruli (6), medullary interstitium (7) and blood vessels (8). Other structures such as the convoluted tubules have low or negligible cyclooxygenase activity (8). Lipoxygenase activity is mainly associated with leukocytes or platelets (9,10) and was reported to be present in isolated glomeruli (11).


Arachidonic Acid Arachidonic Acid Metabolite Cytochrome P450 System Outer Medulla Arachidonic Acid Product 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E.H. Oliw and J.A. Oates, Rabbit renal cortical microsomes metabolize arachidonic acid to trihydroxyeicosatrienoic acids, Prostaglandin 22:863–871 (1981).Google Scholar
  2. 2.
    E.H. Oliw, F.P. Guengerich, J.A. Oates, Oxygenation of arachidonic acid by hepatic monooxygenases, J. Biol. Chem. 257:3771–3781 (1982).PubMedGoogle Scholar
  3. 3.
    J. Capdevila, L. Parkhill, N. Chacos, R. Okita, B.S.S. Masters, R.W. Esterbrook, The oxidative metabolism of arachidonic acid by purified cytochrome P450, Biochem. Biophvs. Acta 101:1357–1363 (1981).Google Scholar
  4. 4.
    A. Morrison and N. Pascoe, Metabolism of arachidonate through NADPH-dependent oxygenase of renal cortex, Proc. Natl. Acad. Sci. U.S.A. 78:7375–7378 (1981).PubMedCrossRefGoogle Scholar
  5. 5.
    F.C. Grenier, T.E. Rollins, W.L. Smith, Kinin-induced prostaglandin synthesis by renal papillary collecting tubule cells in culture, Am. J. Phvsiol. 241:F94–F104 (1981).Google Scholar
  6. 6.
    A. Hassid, M. Konieczjcowski, M.J. Dunn, Prostaglandin synthesis in rat kidney glomeruli, Proc. Natl. Acad. Sci. U.S.A. 76:1155–1159 (1979).PubMedCrossRefGoogle Scholar
  7. 7.
    R.M. Zusman and H.R. Keiser, Prostaglandin E2 biosynthesis by rabbit renomedullary interstitial cells in culture, J. Biol. Chem. 252: 2069–2071 (1977).PubMedGoogle Scholar
  8. 8.
    N.A. Terragno, A. Terragno, J.A. Early, M.A. Roberts, J.C. McGiff, Endogenous prostaglandin synthesis inhibitor in renal cortex. Effects on production of prostacyclin by renal blood vessels, Clin. Sci. Mol. Med. 55:199s-202s (1978).Google Scholar
  9. 9.
    P. Borgeat and B. Samuelsson, Arachidonic acid metabolism in polymorphonuclear leukocytes; Effects of ionophore A23187, Proc. Natl. Acad. Sci. U.S.A. 76:2148–2152 (1979).PubMedCrossRefGoogle Scholar
  10. 10.
    P. Falardeau, M. Hamberg, B. Samuelsson, Metabolism of 8, 11, 14-eicosa-trienoic acid in human platelets, Biochim. Biophys. Acta 441:193–200 (1976).PubMedCrossRefGoogle Scholar
  11. 11.
    K. Jim, A. Hassid, F. Sun, M.J. Dunn, Lipoxygenase activity in rat kidney glomeruli, glomerular epithelial cells, and cortical tubules, J. Biol. Chem. 257:10294–10299 (1982).PubMedGoogle Scholar
  12. 12.
    N.R. Ferreri, M. Schwartzman, N.G. Ibraham, P.N. Chander, J.C. McGiff, Arachidonic acid metabolism in a cell suspension isolated from rabbit renal outer medulla, J. Pharmacol. Exp. Ther. 231:441–448 (1984).PubMedGoogle Scholar
  13. 13.
    P.L. Jorgensen, Sodium and potassium ion pump in kidney tubules, Phvsiol. Rev. 60:864–917 (1980).Google Scholar
  14. 14.
    N.R. Ferreri, M. Schwartzman, N.G. Ibraham, P.N. Chander, J.C. McGiff, Arachidonic acid metabolism in the rabbit thick ascending limb of Henle’s loop, in: “Prostaglandins and Membrane Ion Transport,” P. Braquet, R.P. Garay, J.C. Frolich and S. Nicosia, eds., Raven Press, New York, pp. 303–310 (1984).Google Scholar
  15. 15.
    M.L. Schwartzman, N.G. Abraham, M.A. Carroll, R.D. Levere, J.C. McGiff, Regulation of arachidonic acid metabolism by cytochrome P450 in rabbit kidney, Biochem. J. 238:283–290 (1986).PubMedGoogle Scholar
  16. 16.
    R.E. White and M.J. Coon, Oxygen activation by cytochrome P450, Ann. Rev. Biochem. 49 : 315–356 (1980).PubMedCrossRefGoogle Scholar
  17. 17.
    M.W. Anders, Metabolism of drugs by the kidney, Kidney Int. 18:636–647 (1980).PubMedCrossRefGoogle Scholar
  18. 18.
    T.V. Zenser, M.B. Mattamal, B.B. Davis, Differential distribution of the mixed-function oxidase activities in rabbit kidney, J. Pharmacol. Exp. Ther. 207:719–725 (1978).PubMedGoogle Scholar
  19. 19.
    H. Endou, Cytochrome P450 monooxygenase system in the rabbit kidney: its internephron localization and its induction, Jpn. J. Pharmacol. 33:423–433 (1983).PubMedCrossRefGoogle Scholar
  20. 20.
    J.H. Dees, L.D. Coe, Y. Yasukochi, B.S.S. Masters, Immunofluorescence of NADPH-cytochrome (c) (P450) reductase in rat and mini-pig tissues injected with phenobarbital, Science 208:1473–1475 (1980).PubMedCrossRefGoogle Scholar
  21. 21.
    J.H. Dees, B.S.S. Masters, U. Muller-Eberhard, F.F. Johnson, Effect of 2, 3, 7, 8 tetrachlorodibenzo-p-dioxin and phenobarbital on the occurrence and distribution of four cytochrome P450 isozymes in rabbit kidney, lung and liver, Cancer Res. 42:1423–1432 (1982).PubMedGoogle Scholar
  22. 22.
    J. Capdevila, N. Chacos, J.R. Falck, S. Manna, A. Negro-Vilar, S.R. Ojeda, Novel hypothalamic arachidonate products stimulate somatostatin release from the median eminence, Endocrinology 113:421–423 (1983).PubMedCrossRefGoogle Scholar
  23. 23.
    G.D. Snyder, J. Capdevila, N. Chacos, S. Manna, J.R. Falck, Action of luteinizing hormone-releasing hormone: involvement of novel arachi-donic acid metabolites, Proc. Natl. Acad. Sci. 80:3504–3507 (1983).PubMedCrossRefGoogle Scholar
  24. 24.
    H.R. Jacobson, S. Corona, J. Capdevila, N. Chacos, S. Manna, A. Womack, J.R. Falck, Effects of epoxyicosatrienoic acids on ion transport in rabbit cortical collecting tubules. in: “Prostaglandins and Membrane Ion Transport,” P. Braquet, R.P. Garay, J.C. Frolich and S. Nicosia, eds., Raven Press, New York, pp. 311–318 (1984).Google Scholar
  25. 25.
    M. Schwartzman, N.R. Ferreri, M.A. Carroll, E. Songu-Mize, J.C. McGiff, Renal cytochrome P450-related arachidonate metabolite inhibits Na+-K+-ATPase, Nature (London) 314:620–622 (1985).CrossRefGoogle Scholar
  26. 26.
    M. Schwartzman, M.A. Carroll, N.G. Ibraham, N.R. Ferreri, E. Songu-Mize, J.C. McGiff, Renal arachidonic acid metabolism; the third pathway, Hypertension 7(Suppl. I):I-136-I-144 (1985).Google Scholar
  27. 27.
    J. Capdevila, L.J. Marnett, N. Chacos, R.A. Prough, R.W. Estabrook, Cytochrome P450-dependent oxygenation of arachidonic acid to hydroxyeico-satetraenoic acids, Proc. Natl. Acad. Sci. U.S.A. 79:767–770 (1982).PubMedCrossRefGoogle Scholar
  28. 28.
    J.R. Falck, S. Manna, J. Moltz, N. Chacos, J. Capdevila, Epoxyeicosatrienoic acids stimulate glucogon and insulin release from isolated rat pancreatic islets, Biochem. Biophys. Res. Commun. 114:743–749 (1983).PubMedCrossRefGoogle Scholar
  29. 29.
    W.L. Smith and A. Garcia-Perez, A two-receptor model for the mechanism of action of prostaglandins in the renal collecting tubule, in: “Prostaglandins, Leukotrienes and Lipoxins,” J.M. Bailey, ed., Plenum Press, New York, pp. 35–45 (1980).Google Scholar
  30. 30.
    F. Morel, Sites of hormone action in the mammalian nephron, Am. J. Phvsiol. 240:F159–F164 (1981).Google Scholar
  31. 31.
    H.E. deWardener and E.M. Clark, The natriuretic hormone: new developments, Clin. Sci. 63:415–420 (1982).Google Scholar
  32. 32.
    D.S. Baldwin, E.A. Gombos, H. Chasis, Urinary concentrating mechanism in essential hypertension, Am. J. Med. 38:864–872 (1965).PubMedCrossRefGoogle Scholar
  33. 33.
    O.A. Candia, Ouabain and sodium effects on chloride fluxes across the isolated bullfrog cornea, Am. J. Phvsiol. 223:1053–1057 (1972).Google Scholar
  34. 34.
    M.L. Schwartzman, N.G. Abraham, J. Masferrer, M.W. Dunn, J.C. McGiff, Cytochrome P450-dependent metabolism of arachidonic acid in bovine corneal epithelium, Biochem. Biophys. Res. Commun. 132:343–351 (1985).CrossRefGoogle Scholar
  35. 35.
    M.A. Carroll, M. Schwartzman, M. Baba, N.G. Abraham, J.C. McGiff, Formation of biologically active cytochrome P450-arachidonate metabolites in renomedullary cells, Adv. Prost. Leuk. Thromb. Res. 17B:714–718 (1987).Google Scholar
  36. 36.
    M.L. Schwartzman, M. Balazy, J. Masferrer, N.G. Abraham, J.C. McGiff, R.C. Murphy, 12(R)HETE — A cytochrome P450-dependent arachidonate metabolite that inhibits Na+-K+-ATPase in the cornea, Proc. Natl. Acad. Sci. U.S.A.. in press (1987).Google Scholar
  37. 37.
    M.A. Carroll, M. Schwartzman, N.G. Abraham, A. Pinto, J.C. McGiff, Cytochrome P450-dependent arachidonate metabolism in renomedullary cells: Formation of Na+-K+-ATPase inhibitor, J. Hypertension 4(Suppl 4): S33-S42 (1986).Google Scholar
  38. 38.
    G.A. MacGregor, S. Fenton, J. Alaghband-Zadeh, N.D. MarKandu, J.E. Roulston, H.E. deWardener, An increase in a circulating inhibitor of Na+-K+-ATPase: a possible link between salt intake and the development of essential hypertension, Clin. Sci. 61:17S-20S (1981).PubMedGoogle Scholar
  39. 39.
    Y.U. Postnov, M. Reznikova, G. Boriskina, Na-K-adenosine triphosphatase in the kidney of rats with renal hypertension and spontaneously hypertensive rats, Pflugers Arch. 362:95–99 (1976).PubMedCrossRefGoogle Scholar
  40. 40.
    D. Schlondorff, E. Petty, J. Oates, M. Jacoby, S.D. Levine, Epoxygenase metabolites of arachidonic acid inhibit osmotic water flow in response to vasopressin in the toad urinary bladder. Am. J. Phvsiol.. in press (1987).Google Scholar
  41. 41.
    M.J. Finnen, R.J. Flower, A. Lashenko, K.I. Williams, Cytochrome P450-dependent monooxygenase activity and endothelium-dependent relaxation of vascular tissue, Brit. J. Pharmacol.. Abstract, p. 85 (1986).Google Scholar
  42. 42.
    M.J. Finnen, R.J. Flower, A. Lashenko, K.I. Williams, Airway epithelium influences responsiveness of guinea pig tracheal strips, Brit. J. Pharmacol.. Abstract, p. 86 (1986).Google Scholar
  43. 43.
    K.G. Protor, J.R. Falck, J. Capdevila, Intestinal vasodilation by epoxy-eicosatrienoic acids: arachidonic acid metabolites produced by a cytochrome P450 monooxygenase, Circ. Res., 60:50–59 (1987).CrossRefGoogle Scholar
  44. 44.
    M.A. Carroll, M. Schwartzman, J. Capdevila, J.R. Falck, J.C. McGiff, Vasoactivity of arachidonic acid epoxides, Eur. J. Pharm. 138:281–283 (1987).CrossRefGoogle Scholar
  45. 45.
    J.C. McGiff and M.A. Carroll, Cytochrome P450-related arachidonic acid metabolites, Am. Rev. Resnir. Pis., in press (1987).Google Scholar
  46. 46.
    M. Brezis, S. Rosen, P. Silva, F.H. Epstein, Selective vulnerability of the medullary thick ascending limb to anoxia in the isolated perfused rat kidney, J. Clin. Invest. 73:182–190 (1984).PubMedCrossRefGoogle Scholar
  47. 47.
    J.C. McGiff and C.P. Quilley, Controversies in cardiovascular research. The rat with spontaneous genetic hypertension is not a suitable model of human essential hypertension, Circ. Res. 48:455–463 (1981).PubMedCrossRefGoogle Scholar
  48. 48.
    E.D. Frolich, Response to “the rat with spontaneous genetic hypertension is not a suitable model of human essential hypertension”, Circ. Res. 48:464 (1981).Google Scholar
  49. 49.
    J.M. Armstrong, G.J. Blackwell, R.J. Flower, J.C. McGiff, K.M. Mullane, J.R. Vane, Genetic hypertension in rats is accompanied by a defect in renal prostaglandin catabolism, Nature 260:582–586 (1976).PubMedCrossRefGoogle Scholar
  50. 50.
    M.J. Dunn, Renal prostaglandin synthesis in the spontaneously hypertensive rat, J. Clin. Invest. 58:862–870 (1976).PubMedCrossRefGoogle Scholar
  51. 51.
    Y. Shibouta, Y. Inada, Z. Terashita, K. Nishikawa, S. Kikuchi, K. Shimamoto, Angiotensin-II-stimulated release of thromboxane A2 and prostacyclin (PGI2) in isolated, perfused kidneys of spontaneously hypertensive rats, Biochem. Pharmacol. 28:3601 (1979).PubMedCrossRefGoogle Scholar
  52. 52.
    C.R. Pace-Asciak and M.C. Carrara, Age-dependent increase in the formation of prostaglandin I2 by intact and homogenized aortae from the developing spontaneously hypertensive rat, Biochim. Biophys. Acta 574:177 (1979).PubMedCrossRefGoogle Scholar
  53. 53.
    B.A. Merrick, M.H. Davies, D.E. Cook, T.L. Holeshaw, R.S. Schnell, Alterations in hepatic microsomal drug metabolism and cytochrome P450 proteins in spontaneously hypertensive rats, Pharmacology 30:129–135 (1985).PubMedCrossRefGoogle Scholar
  54. 54.
    P. Greenspan and J. Braon, Hepatic microsomal oxidative drug metabolism in the spontaneously hypertensive rat, Biochem. Pharmacol. 30:687–691 (1981).CrossRefGoogle Scholar
  55. 55.
    M. Haurand and V. Ullrich, Isolation and characterization of thromboxane synthase from human platelets as a cytochrome P450 enzyme, J. Biol. Chem. 260:15059–15067 (1985).PubMedGoogle Scholar
  56. 56.
    D.L. Dewitt and W.L. Smith, Purification of prostacyclin synthase from bovine aorta by immunoaffinity chromatography, J. Biol. Chem. 258: 3258–3293 (1983).Google Scholar
  57. 57.
    Y. Shibouta, Z. Terashita, Y. Inada, K. Nishikawa, S. Kikuchi, Enhanced thromboxane A2 biosynthesis in the kidney of spontaneously hypertensive rats during development of hypertension, Eur. J. Pharmacol. 70: 247 (1981).PubMedCrossRefGoogle Scholar
  58. 58.
    J.R. Dilley, C.T. Stier, Jr., W.J. Arendshorst, Abnormalities in glomerular function in rats developing spontaneous hypertension, Am. J. Phvsiol. 246:F12–F20 (1984).Google Scholar
  59. 59.
    R.J. Roman, Altered pressure-natriuresis relationship in young spontaneously hypertensive rats, Hypertension, in press (1987).Google Scholar
  60. 60.
    W.H. Beierwaltes, W.J. Arendshorst, P.J. Klemmer, Electrolyte and water balance in young spontaneously hypertensive rats, Hypertension 4:908–915 (1982).PubMedCrossRefGoogle Scholar
  61. 61.
    J.P. Rapp and L.K. Dahl, Mutant forms of cytochrome P450 controlling both 18- and 11-B-steroid hydroxylation in the rat, Biochem. 15:1235–1241 (1976).CrossRefGoogle Scholar
  62. 62.
    N.G. Abraham, A. Pinto, K.M. Mullane, R.D. Levere, E. Spokas, Presence of cytochrome P450-dependent monooxygenase in intimai cells of the hog aorta, Hypertension 7:899–904 (1985).PubMedCrossRefGoogle Scholar
  63. 63.
    A. Pinto, N.G. Abraham, K.M. Mullane, Arachidonic acid-induced endothelial -dependent relaxations of canine coronary arteries: contribution of a cytochrome P450-dependent pathway, J. Pharmacol. Exp. Ther. 240: 856–863 (1986).Google Scholar
  64. 64.
    D. Sacerdoti, N.G. Abraham, J.C. McGiff, M.L. Schwartzman, Renal cytochrome P450-dependent metabolism of arachidonic acid in spontaneously hypertensive rats, Biochem. Pharmacol., in press (1987).Google Scholar
  65. 65.
    N.G. Ibraham, M.L. Friedland, R.D. Levere, Heme metabolism in erythroid and hepatic cells, in: “Progress in Hematology, Vol. VIII,” E. Brown, ed., Grune and Stratton, New York, pp. 75–130 (1983).Google Scholar
  66. 66.
    D. Sacerdoti, T.V. Mazzilli, N.G. Abraham, J.C. McGiff, M.L. Schwartzman, The role of cytochrome P450-dependent arachidonic acid metabolites in the development of hypertension in SHR, Clin. Res. 35, Abs, p. 449 (1987).Google Scholar
  67. 67.
    C. Rodriguez-Sargent, J.L. Cangiano, J.L. Cahan, E. Marrero, M. Martinez-Maldonado, Cataracts and hypertension in salt-sensitive rats: a possible ion transport defect, Hypertension 9:304–308 (1987).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Michal Schwartzman
  • Mairead A. Carroll
  • David Sacerdoti
    • 1
  • Nader G. Abraham
    • 2
  • John C. McGiff
  1. 1.The Department of Clinical MedicineUniversity of PaduaPaduaItaly
  2. 2.The Departments of Pharmacology and MedicineNew York Medical CollegeValhallaUSA

Personalised recommendations