Arachidonic Acid Metabolism During Interactions Between Glomerular and Bone Marrow-Derived Cells

  • Josée Sraer
  • Marcelle Bens
  • Jean-Paul Oudinet
  • Larent Baud
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 259)


The concept that cell-cell interaction might modify the metabolism of arachidonic acid (AA) was already suggested nearly ten years ago by several studies in which platelets and blood vessels were coincubated and AA metabolites were analysed. Over subsequent years most of the researchers in this field focused their interest on the interaction between either endothelium and platelets, polymorphonuclear leukocytes (PMNL) and platelets, or PMNL and endothelium. A brief review of these interactions occurring in nonrenal tissue will be presented. The hypothesis that the glomerulus, which includes a peculiar endothelium, could be a preferential site for cell-cell interaction has not been investigated until recently. Yet, it is well documented that activated bone marrow-derived cells may invade the glomerular capillary in a number of experimental or human glomerulonephritides. Both cell types—glomerular and bone marrow-derived cells—were recognized to be the source of various lipidic inflammatory agents such as platelet-activating factor (PAF), prostaglandins (PG), hydroxyeicosatetraenoic acids (HETE) and leukotrienes (LT). This review focuses upon recent results providing strong evidence that, during interaction between glomerular and bone marrow-derived cells, changes occur in arachidonate metabolism. The functional consequence of these changes will be discussed, but we shall limit this review to the interactions involving lipidic factors.


Mesangial Cell Glomerular Cell Lipoxygenase Product Human Glomerulus Nephrotoxic Serum Nephritis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Needleman, A. Wyche, A. Raz, Platelet and blood vessel arachidonate metabolism and interactions, J. Clin. Invest. 63:345–349 (1979).PubMedCrossRefGoogle Scholar
  2. 2.
    G. Hornstra, E. Haddeman, J.A. Don, Blood platelets do not provide endoperoxides for vascular prostacyclin production, Nature (London) 279: 66–68 (1979).CrossRefGoogle Scholar
  3. 3.
    A.J. Marcus, B.B. Weskler, E.A. Jaffe, M.J. Broekman, Synthesis of prostacyclin from platelet-derived endoperoxides by human endothelial cells, J. Clin. Invest. 66:979–986 (1980).PubMedCrossRefGoogle Scholar
  4. 4.
    A.I. Schafer, D.D. Crawford, M.A. Gimbrone, Unidirectional transfer of prostacyclin endoperoxides between platelets and endothelial cells, J. Clin. Invest. 73:1105–1112 (1984).PubMedCrossRefGoogle Scholar
  5. 5.
    P. Borgeat, S. Picard, P. Vallerand, P. Sirois, Transformation of arachidonic acid in leukocytes. Isolation and structural analysis of a novel dihydroxy derivative, Prostaglandins and Medicine 6:557–570 (1981).PubMedCrossRefGoogle Scholar
  6. 6.
    P. Borgeat, B. Fruteau de Laclos, S. Picard, J. Drapeau, P. Vallerand, E.J. Corey, Studies on the mechanism of formation of the 5S, 12S dihydroxy-6–8–10–14 (E, Z, E, Z)-icosatetraenoic acid in leukocytes, Prostaglandins 23:713–724 (1982).PubMedCrossRefGoogle Scholar
  7. 7.
    A.J. Marcus, M.J. Broekman, L.B. Safier, H.L. Ullman, N. Islam, Formation of leukotrienes and other hydroxyacids during platelet-neutrophil interactions in vitro, Biochem. Biophvs. Res. Commun. 109:130–137 (1982).CrossRefGoogle Scholar
  8. 8.
    B. Fruteau de Laclos, P. Braquet, P. Borgeat, Characteristics of leukotriene (LT) and hydroxyeicosatetraenoic acid (HETE) synthesis in human leukocytes in vitro: Effect of arachidonic concentration, Prostaglandins. Leukotrienes and Medicine 13:47–52 (1984).CrossRefGoogle Scholar
  9. 9.
    P.Y.K. Wong, P. Weslund, M. Hamberg, E. Granström, P.H.W. Chao, B. Samuelsson, ω-hydroxylation of 12-L-hydroxy-5, 8, 10, 14 eicosatetraeno-ic acid in human polymorphonuclear leukocytes, J. Biol. Chem. 259: 2683–2686 (1984).PubMedGoogle Scholar
  10. 10.
    A. Marcus, L.B. Safier, H.L. Ullman, M.J. Broekman, N. Islam, T.D. Oglesby, R. Gorman, 12S, 20-dihydroxyicosatetraenoic acid: a new icosa-noid synthesized by neutrophils from 12S-hydroxy icosatetraenoic acid produced by thrombin- or collagen-stimulated platelets, Proc. Natl. Acad. Sci. USA 81:903–907 (1984).PubMedCrossRefGoogle Scholar
  11. 11.
    C.A. Dahinden, R.M. Clancy, M. Gross, J.M. Chiller, T.E. Hugli, Leukotriene C4 production by murine mast cells: Evidence of a role for extracellular leukotriene A4, Proc. Natl. Acad. Sci. USA 82:6632–6636 (1985).PubMedCrossRefGoogle Scholar
  12. 12.
    F. Fitzpatrick, W. Ligget, J. McGee, S. Bunting, D. Morton, B. Samuelsson, Metabolism of leukotriene A4 by human erythrocytes, J. Biol. Chem. 259:11403–11407 (1984).PubMedGoogle Scholar
  13. 13.
    C.R. Pace-Asciak, J. Klein, S.P. Spielberg, Metabolism of leukotriene A4 into C4 by human platelets, Biophvs. Biochim. Acta 877:68–74 (1986).CrossRefGoogle Scholar
  14. 14.
    C. Hadjiagapiou and A. Spector, 12-hydroxyeicosatetraenoic acid reduces prostacyclin production by endothelial cells, Prostaglandins 31:1135–1144 (1986).PubMedCrossRefGoogle Scholar
  15. 15.
    J. Turk, A. Wyche, P. Needleman, Inactivation of vascular prostacyclin synthetase by platelet lipoxygenase products, Biochem. Biophvs. Res. Commun. 95:1628–1632 (1980).CrossRefGoogle Scholar
  16. 16.
    Y. Hashimoto, C. Naito, T. Teramoto, H. Kato, M. Kinoshinta, M. Kawamura, H. Hayashi, H. Oka, Time-dependent inhibition of the cyclo-oxygenase pathway by 12-hydroperoxy 5, 8, 10, 14-eicosatetraenoic acid, Biochem. Biophvs. Res. Commun. 130:781–785 (1985).CrossRefGoogle Scholar
  17. 17.
    J. Maclouf, B. Fruteau de Laclos, P. Borgeat, Stimulation of leukotriene biosynthesis in human blood leukocytes by platelet-derived 12-hydro-peroxy-icosatetraenoic acid, Proc. Natl. Acad. Sci. USA 79:6042–6046 (1982).PubMedCrossRefGoogle Scholar
  18. 18.
    A. Delmaschio, J. Maclouf, E. Corvazier, M.J. Grange, P. Borgeat, Activated platelets stimulate human neutrophil functions, Nouv. Rev. Fr. Hematol. 27:275–278 (1985).Google Scholar
  19. 19.
    J. Maclouf, A. Delmaschio, M.J. Grange, P. Borgeat, Regulation and manipulation of arachidonate cascade in cell-cell interaction, in: “Advances in Prostaglandin, Thromboxane and Leukotriene Research,” Raven Press, New York 15:209–211 (1985).Google Scholar
  20. 20.
    J.Y. Vanderhoek, R.W. Bryant, J.M. Bayley, 15-hydroxy-5–8, 11, 13-eicosate-traenoic acid. A potent and selective inhibitor of platelet lipoxygenase, J. Biol. Chem. 255:5956–5998 (1980).Google Scholar
  21. 21.
    J.Y. Vanderhoek, R.W. Bryant, J.M. Bayley, Inhibition of leukotriene biosynthesis by the leukocyte product 15-hydroxy-5, 8, 11, 13-eicosate-traenoic acid, J. Biol. Chem. 255:10064–10066 (1980).PubMedGoogle Scholar
  22. 22.
    J.Y. Vanderhoek, S.N. Tare, J.M. Bayley, A.L. Goldstein, D. Pluznik, New role for 15-hydroxyeicosatetraenoic acid, J. Biol. Chem. 257:12191–12195 (1982).PubMedGoogle Scholar
  23. 23.
    L.A. Boxer, J.M. Allen, M. Schmidt, M. Yoder, R.L. Baehner, Inhibition of polymorphonuclear leukocyte adherence by prostacyclin, J. Lab. Clin. Med. 95:672–678 (1980).PubMedGoogle Scholar
  24. 24.
    D.K. Miller, S. Sadowski, D.D. Soderman, F.A. Kuehl, Endothelial cell prostacyclin production induced by activated neutrophils, J. Biol. Chem. 260:1006–1014 (1985).PubMedGoogle Scholar
  25. 25.
    J.M. Harlan and K.S. Callahan, Role of hydrogen peroxide in the neutrophil-mediated release of prostacyclin from cultured endothelial cells, J. Clin. Invest. 74:442–448 (1984).PubMedCrossRefGoogle Scholar
  26. 26.
    L. Taylor, M.J. Menconi, P. Polgar, The participation of hydroperoxides and oxygen radicals in the control of prostaglandin synthesis, J. Biol. Chem. 258:6855–6857 (1983).PubMedGoogle Scholar
  27. 27.
    R.A. Lewis, E.J. Goetzl, J.M. Drazen, N.A. Soter, K.F. Austen, E.J. Corey, Functional characterization of synthetic leukotriene B and its stereochemical isomers, J. Exp. Med. 154:1243–1248 (1981).PubMedCrossRefGoogle Scholar
  28. 28.
    E. Pirotsky, E. Ninio, J. Bidault, P. Pfister, J. Benveniste, Biosynthesis of platelet-activating factor. VI. Precursor of platelet-activating factor and acyl transferase activity in isolated rat kidney cells, Lab. Invest. 51:567–572 (1984).Google Scholar
  29. 29.
    A. Hassid, M. Konieczkowski, M.J. Dunn, Prostaglandin synthesis in isolated rat kidney glomeruli, Proc. Natl. Acad. Sci. USA 76:1155–1159 (1979).PubMedCrossRefGoogle Scholar
  30. 30.
    J. Sraer, J.D. Sraer, D. Chansel, Prostaglandin synthesis by isolated rat renal glomeruli, Mol. Cell. Endocrinol. 16:29–37 (1979).PubMedCrossRefGoogle Scholar
  31. 31.
    V.W. Folkert and D. Schlondorff, Prostaglandin synthesis in isolated glomeruli, Prostaglandins 17:79–86 (1979).PubMedCrossRefGoogle Scholar
  32. 32.
    J. Sraer, N. Ardaillou, J.D. Sraer, R. Ardaillou, In vitro prostaglandin synthesis by human glomeruli and papillae, Prostaglandins 23:855–864 (1982).Google Scholar
  33. 33.
    J. Sraer, W. Siess, L. Moulonguet-Doleris, J.P. Oudinet, F. Dray, R. Ardaillou, In vitro prostaglandin synthesis by various rat renal preparations, Biochim. Biophvs. Acta 710:45–52 (1982).Google Scholar
  34. 34.
    J. Sraer, M. Rigaud, M. Bens, H. Rabinovitch, R. Ardaillou, Metabolism of arachidonic acid via the lipoxygenase pathway in human and murine glomeruli, J. Biol. Chem. 258:4325–4330 (1983).PubMedGoogle Scholar
  35. 35.
    K. Jim, A. Hassid, F. Sun, M.J. Dunn, Lipoxygenase activity in rat kidney glomeruli, glomerular epithelial cells and cortical tubules, J. Biol. Chem. 257:10294–10299 (1982).PubMedGoogle Scholar
  36. 36.
    R.B. Sterzel, J. H.H. Ehrich, H. Lucia, D. Thomson, M. Kashgarian, Mesangial disposal of glomerular immune deposits in acute malarial glomerulonephritis of rats, Lab. Invest. 46:209–214 (1982).PubMedGoogle Scholar
  37. 37.
    S.R. Holdsworth, N.W. Thomson, E.F. Glasgow, J.P. Dowling, R.C. Atkins, Tissue culture of isolated glomeruli in experimental chronic immune complex glomerulonephritis, Nephron 32:227–233 (1978).Google Scholar
  38. 38.
    H. Shigematsu, Morphological approach on the action and function of monocytes and macrophages in acute experimental glomerulonephritis, in: “Proceedings of the VIIIth International Congress of Nephrology,” W. Zurukzogzu, M. Papadimetriou, M. Purpasopoulos, M. Sion, C. Zamboulis, eds., S. Karger, Basel, pp. 872–878 (1981).Google Scholar
  39. 39.
    G.J. Becker, W.W. Hancock, J.L. Stow, E.F. Glasgow, R.C. Atkins, N.M. Thomson, Involvement of the macrophages in experimental crescentic glomerulonephritis, J. Exp. Med. 147:98–109 (1978).CrossRefGoogle Scholar
  40. 40.
    R.C. Atkins, S.R. Holdsworth, W.W. Hancock, N.M. Thomson, E.F. Glasgow, Cellular immune mechanisms in human glomerulonephritis : the role of mononuclear leukocytes, Springer Semin.Immunopathol. 5:269–296 (1982).Google Scholar
  41. 41.
    A.B. Magil, L.O. Wadsworth, M. Loewen, Monocytes and human renal glomerular disease. A quantitative evaluation, Lab. Invest. 44:27–33 (1981).PubMedGoogle Scholar
  42. 42.
    N.M. Thomson, S.R. Holdsworth, E.F. Glasgow, R.C. Atkins, The macrophage in the development of experimental crescentic glomerulonephritis, Am. J. Pathol. 94:223–240 (1979).PubMedGoogle Scholar
  43. 43.
    A.E. Postlethwaite and A. Kang, Collagen and collagen peptide Chemotaxis of human blood monocytes, J. Exp. Med. 143:1299–1307 (1976).PubMedCrossRefGoogle Scholar
  44. 44.
    C.H. Dubois, G. Goffinet, J.B. Foidard, C. Dechenne, J.M. Foidard, P. Mahieu, Evidence for a particular binding capacity of rat peritoneal macrophages to rat glomerular mesangial cells in vitro, Europ. J. Clin. Invest. 12:239–246 (1982).PubMedCrossRefGoogle Scholar
  45. 45.
    M.T. Quinn, S. Parthasarathy, D. Steinberg, Endothelial cell-derived chemotactic activity for mouse peritoneal macrophages and the effects of modified form of low density lipoprotein, Proc. Natl. Acad. Sci. USA 82:5949–5953 (1985).PubMedCrossRefGoogle Scholar
  46. 46.
    L. Baud, J. Sraer, F. Delarue, M. Bens, F. Balavoine, D. Schlondorff, R. Ardaillou, J.D. Sraer, Lipoxygenase products mediate the attachment of rat macrophages to glomeruli in vitro, Kidney Int. 27:855–863 (1985).PubMedCrossRefGoogle Scholar
  47. 47.
    W.A. Scott, N.A. Pawloski, M. Andreach, Z.A. Cohn, Resting macrophages produce distinct metabolites from exogenous arachidonic acid, J. Exp. Med. 155:535–547 (1982).PubMedCrossRefGoogle Scholar
  48. 48.
    C.A. Rouzer, W.A. Scott, A.L. Hamill, F.T. Liu, D.H. Katz, Z.A. Cohn, Secretion of leukotriene C and other arachidonic acid metabolites by macrophages challenged with immunoglobulin E immune complexes, J. Exp. Med. 156:1077–1086 (1982).PubMedCrossRefGoogle Scholar
  49. 49.
    H. Rabinovitch, J. Durand, M. Rigaud, F. Mendy, J.C. Breton, Transformation of arachidonic acid into monohydroxy-eicosatetraenoic acids by mouse peritoneal macrophages, Lipids 16:518–524 (1981).PubMedCrossRefGoogle Scholar
  50. 50.
    N. Doig and A.W. Ford-Hutchinson, The production and characterization of products of the lipoxygenase enzyme system released by rat peritoneal macrophages, Prostaglandins 20:1007–1019 (1980).PubMedCrossRefGoogle Scholar
  51. 51.
    I. Koyama, H. Yamagami, T. Kuwal, M. Kurata, Release of 6-keto-prostaglandin F and thromboxane B2 from mouse peritoneal macrophages during their adhesion and spreading on a glass surface, Prostaglandins 23:777–785 (1982).PubMedCrossRefGoogle Scholar
  52. 52.
    E.A. Lianos, M.A. Rahman, M.J. Dunn, Glomerular arachidonate lipoxygenation in rat nephrotoxic serum nephritis, J. Clin. Invest. 76:1355–1359 (1985).PubMedCrossRefGoogle Scholar
  53. 53.
    R. Lacave, F. Delarue, E. Rondeau, J.D. Sraer, 5- and 12-hydroperoxyte-traenoic acids promote contraction of cultured glomerular visceral epithelial cells, Kidney Int. 27:339 (Abstr.) (1986).Google Scholar
  54. 54.
    K. Kuhn, G.B. Ryan, S.J. Hein, R.G. Galaske, M.J. Karnovsky, An ultrastructural study of the mechanisms of proteinuria in rat nephrotoxic nephritis, Lab. Invest. 36:375–387 (1977).PubMedGoogle Scholar
  55. 55.
    L. Baud, J. Hagege, J. Sraer, E. Rondeau, J. Perez, R. Ardaillou, Reactive oxygen production by cultured rat glomerular mesangial cells during phagocytosis is associated with stimulation of lipoxygenase activity, J. Exp. Med. 158:1836–1852 (1983).PubMedCrossRefGoogle Scholar
  56. 56.
    J. MacDermont, C.R. Kelsey, K.A. Maddell, P. Richmond, R.K. Knight, P.J. Cole, C.T. Dollery, D.N. Landon, I.A. Blair, Synthesis of leukotriene B4 and prostanoids by human alveolar macrophages: analysis by gas chromatography/mass spectrometry, Prostaglandins 27:163–169 (1984).CrossRefGoogle Scholar
  57. 57.
    W. Hsueh and F.F. Sun, Leukotriene B4 biosynthesis by alveolar macrophages, Biochem. Biophvs. Res. Commun. 106:1085–1091 (1982).CrossRefGoogle Scholar
  58. 58.
    J.A. Rankin, M. Hitchock, W. Merrill, M.K. Bach, J.R. Braschler, P.W. Askenase, IgE-dependent release of leukotriene C4 from alveolar macrophages, Nature (London) 297:329–331 (1982) .CrossRefGoogle Scholar
  59. 59.
    J. Sraer, M. Bens, J.D. Sraer, R. Ardaillou, Specific activation of platelet thromboxane (TX) synthetase by human glomeruli in vitro, Kidney Int. 64:168 (Abstr.) (1984).Google Scholar
  60. 60.
    J. Sraer, C. Wolf, J.P. Oudinet, M. Bens, R. Ardaillou, J.D. Sraer, Human glomeruli release saturated fatty acids which stimulate thromboxane synthesis in platelets, Kidney Int.. in press (1987).Google Scholar
  61. 61.
    D. DeProst and A. Kanfer, Quantitative assessment of procoagulant activity in isolated rat glomeruli, Kidney Int. 28:566–568 (1985).CrossRefGoogle Scholar
  62. 62.
    J.R. Maynard, C.A. Heckman, F.A. Pitlick, Y. Nemerson, Association of tissue factor activity with the surface of cultured cells, J. Clin. Invest. 52:1427–1434 (1973).CrossRefGoogle Scholar
  63. 63.
    M. Colucci, G. Balconi, R. Lorenzet, A. Pietra, D. Locati, M.B. Donati, N. Semeraro, Cultured human endothelial cells generate tissue factor in response to endotoxin, J. Clin. Invest. 71:1893–1896 (1983).PubMedCrossRefGoogle Scholar
  64. 64.
    M. Poe and J.M. Liesch, Mouse submaxillary gland renin contains a noncovalently attached fatty acid, J. Biol. Chem. 258:9856–9860 (1983).PubMedGoogle Scholar
  65. 65.
    A.A. Aderem, M.M. Keum, E. Pure, Z.A. Cohn, Bacterial lipopolysaccharides, phorbolmyristate acetate and zymosan induce the myristoylation of specific macrophage proteins, Proc. Natl. Acad. Sci. USA 83:5817–5821 (1986).PubMedCrossRefGoogle Scholar
  66. 66.
    D.A. Towler and L. Glaser, Protein fatty acid acylation: enzymatic synthesis of an N-myristoyl glycl peptide, Proc. Natl. Acad. Sci. USA 83:2812–2816 (1986).PubMedCrossRefGoogle Scholar
  67. 67.
    E.N. Olson, D.A. Towler, L. Glaser, Specificity of fatty acid acylation of cellular proteins, J. Biol. Chem. 260:3784–3790 (1985).PubMedGoogle Scholar
  68. 68.
    R.M.C. Dawson, R.F. Irvine, J. Bray, P.J. Quinn, Long-chain unsaturated diacylglycerols cause perturbation in the structure of phospholipid bilayers rendering them susceptible to phospholipid attack, Biochem. Biophys. Res. Commun. 125:836–842 (1984).CrossRefGoogle Scholar
  69. 69.
    J. Sraer, M. Bens, J.D. Sraer, L. Baud, E. Podjarny, R. Ardaillou, Changes in arachidonic acid metabolism during interaction between glomerular and bone marrow-derived cells, Advances in Inflammation Research 10:291–293 (1986).Google Scholar
  70. 70.
    E. Dratewka-Kos, D.O. Tinker, B. Kindl, Unsaturated fatty acids inhibit ADP-arachidonate-induced platelet aggregation without affecting thromboxane synthesis, Biochem. Cell. Biol. 64:906–913 (1985).Google Scholar
  71. 71.
    J. Sraer, L. Baud, M. Bens, E. Podjarny, D. Schlondorff, R. Ardaillou, J.D. Sraer, Glomeruli cooperate with macrophages in converting arachidonic acid to prostaglandins and hydroxyeicosatetraenoic acids, Prostaglandins. Leukotrienes and Medicine 13:67–74 (1984).CrossRefGoogle Scholar
  72. 72.
    J. Sraer, M. Bens, J.P. Oudinet, R. Ardaillou, Bioconversion of leukotriene C4 by rat glomeruli and papilla, Prostaglandins 31:909–921 (1986).PubMedCrossRefGoogle Scholar
  73. 73.
    K. Bernström and S. Hammarström, Metabolism of leukotriene D by porcine kidney, J. Biol. Chem. 256:9579–9582 (1981).PubMedGoogle Scholar
  74. 74.
    E.J. Goetzl, B.A. Burrall, L. Baud, K.H. Scriven, J.D. Levine, C.H. Koo, Generation and recognition of leukotriene mediators of hypersensitivity and inflammation, Dig. Pis. Sci., in press (1987).Google Scholar
  75. 75.
    E.J. Goetzl, L.L. Brindley, D.W. Goldman, Enhancement of human neutrophil adherence by synthetic leukotriene constituents of the slow-reacting substance of anaphylaxis, Immunology 50:35–41 (1983).PubMedGoogle Scholar
  76. 76.
    L. Baud, J. Sraer, J. Perez, M.P. Nivez, R. Ardaillou, Leukotriene C4 binds to human glomerular epithelial cells and promotes their proliferation in vitro, J. Clin. Invest. 76:374–377 (1985).PubMedCrossRefGoogle Scholar
  77. 77.
    R. Barnett, P. Goldwasser, L.A. Scharschmidt, D. Schlondorff, Effects of leukotrienes on isolated rat glomeruli and cultured mesangial cells, Am. J. Phvsiol. 250:F838–F844 (1986).Google Scholar
  78. 78.
    M. Simonson and M.J. Dunn, Leukotrienes C4 and D4 contract rat glomerular mesangial cells, Kidnev Int. 30:524–531 (1986).CrossRefGoogle Scholar
  79. 79.
    E.B. Cramer, L. Pologe, A. Pawlowski, Z.A. Cohn, W.A. Scott, Leukotriene C promotes prostacyclin synthesis by human endothelial cells, Proc. Natl. Acad. Sci. USA 80:4109–4113 (1983).PubMedCrossRefGoogle Scholar
  80. 80.
    M.A. Clark, D. Littlejohn, T.P. Conway, S. Mong, S. Steiner, S.T. Crooke, Leukotriene D4 treatment of bovine aortic endothelial cells and murine smooth muscle cells in culture results in an increase in phospholipase A2 activity, J. Biol. Chem. 261:10713–10718 (1986).PubMedGoogle Scholar
  81. 81.
    L.A. Scharschmidt, J.G. Douglas, M.J. Dunn, Angiotensin II and eicosanoids in the control of glomerular size in the rat and human, Am. J. Phvsiol. 250:F348–F356 (1986).Google Scholar
  82. 82.
    L. Baud, J. Perez, M. Denis, R. Ardaillou, Modulation of fibroblast proliferation by sulfidopeptide leukotrienes: effect of indomethacin, J. Immunol. 138:1190–1195 (1987).PubMedGoogle Scholar
  83. 83.
    D. Schlondorff, J.A. Satriano, J. Hagege, J. Perez, L. Baud, Effect of platelet-activating factor and serum-treated zymosan on prostaglandin E2 synthesis, arachidonic acid release and contraction of cultured rat mesangial cells, J. Clin. Invest. 73:1227–1231 (1984).PubMedCrossRefGoogle Scholar
  84. 84.
    D. Schlondorff and R. Neuwirth, Platelet-activating factor and the kidney, Am. J. Phvsiol. 251:F1–F11 (1986).Google Scholar
  85. 85.
    L. Baud, J. Perez, R. Ardaillou, Dexamethasone and hydrogen peroxide production by mesangial cells during phagocytosis, Am. J. Physiol. 250: F596–F604 (1986).PubMedGoogle Scholar
  86. 86.
    E.A. Lianos, Leukotriene synthesis in nephrotoxic serum nephritis: role of complement and polymorphonuclear leukocytes, Clin. Res. 34:972A (Abstr.) (1986).Google Scholar
  87. 87.
    E.A. Lianos and B. Noble, Glomerular arachidonate 5-lipoxygenation in active and passive Heymann nephritis, Kidnev Int. 31:277 (Abstr.) (1987).Google Scholar
  88. 88.
    M.A. Rahman, M. Nakasawa, S.N. Emancipator, M.J. Dunn, Increased leukotriene B4 (LTB4) synthesis in immune-injured rat glomeruli, Kidnev Int. 29:343 (Abstr.) (1986).Google Scholar
  89. 89.
    S. Shak and I.M. Goldstein, ω-oxydation is the major pathway for the catabolism of leukotriene B4 in human polymorphonuclear leukocytes, J. Biol. Chem. 259:10181–10187 (1984).PubMedGoogle Scholar
  90. 90.
    O. Breuer and S. Hammarström, Enzymatic conversion of leukotriene B4 to 6-transleukotriene B4 by rat kidney homogenates, Biochem. Biophvs. Res. Commun. 142:667–673 (1987).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Josée Sraer
    • 1
  • Marcelle Bens
    • 1
  • Jean-Paul Oudinet
    • 1
  • Larent Baud
    • 1
  1. 1.INSERM 64Hôpital TenonParisFrance

Personalised recommendations